Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

· Packt Publishing Ltd
4.5
4 na review
E-book
316
Mga Page

Tungkol sa ebook na ito

Explore various Generative Adversarial Network architectures using the Python ecosystemKey FeaturesUse different datasets to build advanced projects in the Generative Adversarial Network domainImplement projects ranging from generating 3D shapes to a face aging applicationExplore the power of GANs to contribute in open source research and projectsBook Description

Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain.

Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation.

By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects.

What you will learnTrain a network on the 3D ShapeNet dataset to generate realistic shapesGenerate anime characters using the Keras implementation of DCGANImplement an SRGAN network to generate high-resolution imagesTrain Age-cGAN on Wiki-Cropped images to improve face verificationUse Conditional GANs for image-to-image translationUnderstand the generator and discriminator implementations of StackGAN in KerasWho this book is for

If you’re a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.

Mga rating at review

4.5
4 na review

Tungkol sa may-akda

Kailash Ahirwar is a machine learning and deep learning enthusiast. He has worked in many areas of Artificial Intelligence (AI), ranging from natural language processing and computer vision to generative modeling using GANs. He is a co-founder and CTO of Mate Labs. He uses GANs to build different models, such as turning paintings into photos and controlling deep image synthesis with texture patches. He is super optimistic about AGI and believes that AI is going to be the workhorse of human evolution.

I-rate ang e-book na ito

Ipalaam sa amin ang iyong opinyon.

Impormasyon sa pagbabasa

Mga smartphone at tablet
I-install ang Google Play Books app para sa Android at iPad/iPhone. Awtomatiko itong nagsi-sync sa account mo at nagbibigay-daan sa iyong magbasa online o offline nasaan ka man.
Mga laptop at computer
Maaari kang makinig sa mga audiobook na binili sa Google Play gamit ang web browser ng iyong computer.
Mga eReader at iba pang mga device
Para magbasa tungkol sa mga e-ink device gaya ng mga Kobo eReader, kakailanganin mong mag-download ng file at ilipat ito sa iyong device. Sundin ang mga detalyadong tagubilin sa Help Center para mailipat ang mga file sa mga sinusuportahang eReader.