Grundstrukturen der Analysis I

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Cartea 58 · Springer-Verlag
Carte electronică
412
Pagini

Despre această carte electronică

In der Monographie wird ein systematischer Aufbau der Analysis unter Be nutzung des Limitierungsbegriffs vorgenommen. Insbesondere werden die Theorie der Limesräume und limesuniformen Räume, die limitierte Algebra und die allgemeine Differentialrechnung entwickelt. Die Notwendigkeit, den Topologiebegriff abzuschwächen und ihn durch den - wie sich zeigt - bedeutend leistungsfähigeren Begriff der Limitierung zu ersetzen, ergibt sich bei einer Reihe von Problemen in Abbildungsräumen. Wir führen zwei Beispiele an. Bekanntlich existiert zu topologischen, ja sogar zu separierten topologischen Räumen X und Y im allgemeinen keine gröbste Topologie von C(X, Y), bezüglich der die Evaluationsabbildung w von C(X, Y) X X in Y stetig ist, was zur Folge hat, daß die Kategorien aller topologischen Räume und aller HAusDoRFF-Räume nicht cartesisch abge schlossen sind. Es existiert aber stets eine gröbste Limitierung von C(X, Y), bezüglich der w stetig ist, und die Kategorien aller pseudotopologischen und aller separierten pseudotopologischen Räume sind cartesisch abgeschlossen. Nach dem Satz von KELLER-MAISSEN gibt es zu separierten lokalkonvexen topologischen Vektorräumen X und Y nur dann eine Vektorraumtopologie von L(X, Y), bezüglich der die Evaluationsabbildung von L(X, Y) X X in Y stetig ist, wenn X normierbar ist, weshalb zum Beispiel die Kategorien aller topologischen Vektorräume und aller separierten lokalkonvexen topolo gischen Vektorräume bezüglich Tensorprodukte keine abgeschlossenen Kate gorien bilden. Die Kategorien aller pseudotopologischen Vektorräume und aller in einem engeren Sinne separierten lokalkonvexen pseudotopologischen Vektorräume sind hingegen, als symmetrische monoidale Kategorien bezüglich Tensorprodukte, abgeschlossen.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.