Hands-On Neural Networks with Keras: Design and create neural networks using deep learning and artificial intelligence principles

· Packt Publishing Ltd
eBook
462
Pages

About this eBook

Your one-stop guide to learning and implementing artificial neural networks with Keras effectivelyKey FeaturesDesign and create neural network architectures on different domains using KerasIntegrate neural network models in your applications using this highly practical guideGet ready for the future of neural networks through transfer learning and predicting multi network modelsBook Description

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning.

Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks.

By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.

What you will learnUnderstand the fundamental nature and workflow of predictive data modelingExplore how different types of visual and linguistic signals are processed by neural networksDive into the mathematical and statistical ideas behind how networks learn from dataDesign and implement various neural networks such as CNNs, LSTMs, and GANsUse different architectures to tackle cognitive tasks and embed intelligence in systemsLearn how to generate synthetic data and use augmentation strategies to improve your modelsStay on top of the latest academic and commercial developments in the field of AIWho this book is for

This book is for machine learning practitioners, deep learning researchers and AI enthusiasts who are looking to get well versed with different neural network architecture using Keras. Working knowledge of Python programming language is mandatory.

About the author

Niloy Purkait is a technology and strategy consultant by profession. He currently resides in the Netherlands, where he offers his consulting services to local and international companies alike. He specializes in integrated solutions involving artificial intelligence, and takes pride in navigating his clients through dynamic and disruptive business environments.He has a masters in Strategic Management from Tilburg University, and a full specialization in data science from Michigan University. He has advanced industry grade certifications from IBM, in subjects like signal processing, cloud computing, machine and deep learning. He is also perusing advanced academic degrees in several related fields, and is a self-proclaimed lifelong learner.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.