Computational Methods of Feature Selection

CRC Press
Free sample

Due to increasing demands for dimensionality reduction, research on feature selection has deeply and widely expanded into many fields, including computational statistics, pattern recognition, machine learning, data mining, and knowledge discovery. Highlighting current research issues, Computational Methods of Feature Selection introduces the basic concepts and principles, state-of-the-art algorithms, and novel applications of this tool.

The book begins by exploring unsupervised, randomized, and causal feature selection. It then reports on some recent results of empowering feature selection, including active feature selection, decision-border estimate, the use of ensembles with independent probes, and incremental feature selection. This is followed by discussions of weighting and local methods, such as the ReliefF family, k-means clustering, local feature relevance, and a new interpretation of Relief. The book subsequently covers text classification, a new feature selection score, and both constraint-guided and aggressive feature selection. The final section examines applications of feature selection in bioinformatics, including feature construction as well as redundancy-, ensemble-, and penalty-based feature selection.

Through a clear, concise, and coherent presentation of topics, this volume systematically covers the key concepts, underlying principles, and inventive applications of feature selection, illustrating how this powerful tool can efficiently harness massive, high-dimensional data and turn it into valuable, reliable information.

Read more
Loading...

Additional Information

Publisher
CRC Press
Read more
Published on
Oct 29, 2007
Read more
Pages
440
Read more
ISBN
9781584888796
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Business & Economics / Statistics
Computers / Databases / Data Mining
Computers / General
Mathematics / Number Systems
Mathematics / Probability & Statistics / General
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The ability to analyze and understand massive data sets lags far behind the ability to gather and store the data. To meet this challenge, knowledge discovery and data mining (KDD) is growing rapidly as an emerging field. However, no matter how powerful computers are now or will be in the future, KDD researchers and practitioners must consider how to manage ever-growing data which is, ironically, due to the extensive use of computers and ease of data collection with computers. Many different approaches have been used to address the data explosion issue, such as algorithm scale-up and data reduction. Instance, example, or tuple selection pertains to methods or algorithms that select or search for a representative portion of data that can fulfill a KDD task as if the whole data is used. Instance selection is directly related to data reduction and becomes increasingly important in many KDD applications due to the need for processing efficiency and/or storage efficiency.
One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc.
Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Social computing is concerned with the study of social behavior and social c- text based on computational systems. Behavioral modeling reproduces the social behavior, and allows for experimenting, scenario planning, and deep understa- ing of behavior, patterns, and potential outcomes. The pervasive use of computer and Internet technologies provides an unprecedented environment of various - cial activities. Social computing facilitates behavioral modeling in model building, analysis, pattern mining, and prediction. Numerous interdisciplinary and inter- pendent systems are created and used to represent the various social and physical systems for investigating the interactions between groups, communities, or nati- states. This requires joint efforts to take advantage of the state-of-the-art research from multiple disciplines, social computing, and behavioral modeling in order to document lessons learned and develop novel theories, experiments, and methodo- gies in terms of social, physical, psychological, and governmental mechanisms. The goal is to enable us to experiment, create, and recreate an operational environment with a better understanding of the contributions from each individual discipline, forging joint interdisciplinary efforts. This is the second international workshop on Social Computing, Behavioral ModelingandPrediction. The submissions were from Asia, Australia, Europe, and America. Since SBP09 is a single-track workshop, we could not accept all the good submissions. The accepted papers cover a wide range of interesting topics.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.