Introduction to Approximate Groups

¡ London Mathematical Society Student Texts āļ´āˇœāļ­ 94 ¡ Cambridge University Press
āļ‰-āļ´āˇœāļ­
221
āļ´āˇ’āļ§āˇ”

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļœāˇāļą

Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.

āļ­āˇ€ ⎃⎜āļēāˇ āļœāļąāˇŠāļą

āļšāļģ⎊āļ­āˇ˜ āļ´āˇ’⎅⎒āļļāļŗ

Matthew C. H. Tointon is the Stokes Research Fellow at Pembroke College, Cambridge, affiliated to the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. He has held postdoctoral positions at Homerton College, Cambridge, at the UniversitÊ de Paris-Sud and at the UniversitÊ de NeuchÃĸtel, Switzerland. Tointon is the author of numerous research papers on approximate groups and he proved the strongest known results describing the structure of nilpotent and residually nilpotent approximate groups.

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļ…āļœāļēāļąāˇŠāļą

āļ”āļļ āˇƒāˇ’āļ­āļą āļ¯āˇ™āļē āļ…āļ´āļ§ āļšāˇ’āļēāļąāˇŠāļą.

āļšāˇ’āļē⎀⎓āļ¸āˇš āļ­āˇœāļģāļ­āˇ”āļģ⎔

⎃⎊āļ¸āˇāļģ⎊āļ§āˇŠ āļ¯āˇ”āļģāļšāļŽāļą āˇƒāˇ„ āļ§āˇāļļ⎊āļŊāļ§āˇŠ
Android āˇƒāˇ„ iPad/iPhone ⎃āļŗāˇ„āˇ Google Play āļ´āˇœāļ­āˇŠ āļē⎙āļ¯āˇ”āļ¸ āˇƒāˇŠāļŽāˇāļ´āļąāļē āļšāļģāļąāˇŠāļą. āļ‘āļē āļ”āļļ⎚ āļœāˇ’āļĢ⎔āļ¸ āˇƒāļ¸āļŸ āˇƒāˇŠāˇ€āļēāļ‚āļšāˇŠâ€āļģ⎓āļē⎀ ⎃āļ¸āļ¸āˇ”⎄⎔āļģ⎊āļ­ āļšāļģāļą āļ…āļ­āļģ āļ”āļļāļ§ āļ•āļąāˇ‘āļ¸ āļ­āˇāļąāļš āˇƒāˇ’āļ§ āˇƒāļļ⎐āļŗāˇ’⎀ āˇ„āˇ āļąāˇœāļļ⎐āļŗāˇ’⎀ āļšāˇ’āļē⎀⎓āļ¸āļ§ āļ‰āļŠ āˇƒāļŊ⎃āļē⎒.
āļŊ⎐āļ´āˇŠāļ§āˇœāļ´āˇŠ āˇƒāˇ„ āļ´āļģ⎒āļœāļĢāļš
āļ”āļļāļ§ āļ”āļļ⎚ āļ´āļģ⎒āļœāļĢāļšāļē⎚ ⎀⎙āļļ⎊ āļļāˇŠâ€āļģāˇ€āˇŠāˇƒāļģāļē āļˇāˇāˇ€āˇ’āļ­āļē⎙āļąāˇŠ Google Play āļ¸āļ­ āļ¸āˇ’āļŊāļ¯āˇ“ āļœāļ­āˇŠ āˇāˇŠâ€āļģāˇ€āˇŠâ€āļēāļ´āˇœāļ­āˇŠāˇ€āļŊāļ§ āˇƒāˇ€āļąāˇŠ āļ¯āˇ’āļē ⎄⎐āļš.
eReaders āˇƒāˇ„ ⎀⎙āļąāļ­āˇŠ āļ‹āļ´āˇāļ‚āļœ
Kobo eReaders ⎀⎐āļąāˇ’ e-ink āļ‹āļ´āˇāļ‚āļœ āļ´āˇ’⎅⎒āļļāļŗ āļšāˇ’āļē⎀⎓āļ¸āļ§, āļ”āļļ āˇ€āˇ’āˇƒāˇ’āļąāˇŠ āļœāˇœāļąāˇ”⎀āļšāˇŠ āļļāˇāļœāˇ™āļą āļ”āļļ⎚ āļ‹āļ´āˇāļ‚āļœāļēāļ§ āļ‘āļē āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸ āˇƒāˇ’āļ¯āˇ” āļšāˇ… āļē⎔āļ­āˇ” āˇ€āˇš. āļ†āļ°āˇāļģāļšāļģ⎔ āļ‰-āļšāˇ’āļē⎀āļąāļēāļ§ āļœāˇœāļąāˇ” āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸āļ§ āˇ€āˇ’āˇƒāˇŠāļ­āļģāˇāļ­āˇŠāļ¸āļš āļ‹āļ¯āˇ€āˇ” āļ¸āļ°āˇŠâ€āļē⎃⎊āļŽāˇāļą āļ‹āļ´āļ¯āˇ™āˇƒāˇŠ āļ…āļąāˇ”āļœāļ¸āļąāļē āļšāļģāļąāˇŠāļą.