Introduction to Mathematical Logic

· Springer Science & Business Media
āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•
342
āŠŠāŦ‡āМ

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ• āŠĩāŠŋāŠķāŦ‡

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•āŠĻāŦ‡ āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ†āŠŠāŦ‹

āŠĪāŠŪāŦ‡ āŠķāŦāŠ‚ āŠĩāŠŋāŠšāŠūāŠ°āŦ‹ āŠ›āŦ‹ āŠ…āŠŪāŠĻāŦ‡ āŠœāŠĢāŠūāŠĩāŦ‹.

āŠŪāŠūāŠđāŠŋāŠĪāŦ€ āŠĩāŠūāŠ‚āŠšāŠĩāŦ€

āŠļāŦāŠŪāŠūāŠ°āŦāПāŠŦāŦ‹āŠĻ āŠ…āŠĻāŦ‡ āŠŸāŦ…āŠŽāŦāŠēāŦ‡āП
Android āŠ…āŠĻāŦ‡ iPad/iPhone āŠŪāŠūāŠŸāŦ‡ Google Play Books āŠāŠŠ āŠ‡āŠĻāŦāŠļāŦāПāŦ‰āŠē āŠ•āŠ°āŦ‹. āŠĪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠāŠ•āŠūāŠ‰āŠĻāŦāП āŠļāŠūāŠĨāŦ‡ āŠ‘āŠŸāŦ‹āŠŪāŦ…āПāŠŋāŠ• āŠ°āŦ€āŠĪāŦ‡ āŠļāŠŋāŠ‚āŠ• āŠĨāŠūāŠŊ āŠ›āŦ‡ āŠ…āŠĻāŦ‡ āŠĪāŠŪāŠĻāŦ‡ āŠœāŦāŠŊāŠūāŠ‚ āŠŠāŠĢ āŠđāŦ‹ āŠĪāŦāŠŊāŠūāŠ‚ āŠĪāŠŪāŠĻāŦ‡ āŠ‘āŠĻāŠēāŠūāŠ‡āŠĻ āŠ…āŠĨāŠĩāŠū āŠ‘āŠŦāŠēāŠūāŠ‡āŠĻ āŠĩāŠūāŠ‚āŠšāŠĩāŠūāŠĻāŦ€ āŠŪāŠ‚āŠœāŦ‚āаāŦ€ āŠ†āŠŠāŦ‡ āŠ›āŦ‡.
āŠēāŦ…āŠŠāŠŸāŦ‰āŠŠ āŠ…āŠĻāŦ‡ āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°
Google Play āŠŠāŠ° āŠ–āŠ°āŦ€āŠĶāŦ‡āŠē āŠ‘āŠĄāŠŋāŠ“āŠŽāŦāŠ•āŠĻāŦ‡ āŠĪāŠŪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°āŠĻāŠū āŠĩāŦ‡āŠŽ āŠŽāŦāаāŠūāŠ‰āŠāŠ°āŠĻāŦ‹ āŠ‰āŠŠāŠŊāŦ‹āŠ— āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠļāŠūāŠ‚āŠ­āŠģāŦ€ āŠķāŠ•āŦ‹ āŠ›āŦ‹.
eReaders āŠ…āŠĻāŦ‡ āŠ…āŠĻāŦāŠŊ āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ
Kobo āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠœāŦ‡āŠĩāŠū āŠ‡-āŠ‡āŠ‚āŠ• āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠĩāŠūāŠ‚āŠšāŠĩāŠū āŠŪāŠūāŠŸāŦ‡, āŠĪāŠŪāŠūāŠ°āŦ‡ āŠŦāŠūāŠ‡āŠēāŠĻāŦ‡ āŠĄāŠūāŠ‰āŠĻāŠēāŦ‹āŠĄ āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠŸāŦāаāŠūāŠĻāŦāŠļāŠŦāŠ° āŠ•āŠ°āŠĩāŠūāŠĻāŦ€ āŠœāŠ°āŦ‚āа āŠŠāŠĄāŠķāŦ‡. āŠļāŠŠāŦ‹āаāŦāПāŦ‡āŠĄ āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠŠāŠ° āŠŦāŠūāŠ‡āŠēāŦ‹ āŠŸāŦāаāŠūāŠĻāŦāŠļāŦāŠŦāŠ° āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠļāŠđāŠūāŠŊāŠĪāŠū āŠ•āŦ‡āŠĻāŦāŠĶāŦāаāŠĻāŦ€ āŠĩāŠŋāŠ—āŠĪāŠĩāŠūāŠ° āŠļāŦ‚āКāŠĻāŠūāŠ“ āŠ…āŠĻāŦāŠļāŠ°āŦ‹.