Introduction to Mathematical Physics

· Verkoop deur John Wiley & Sons
E-boek
543
Bladsye

Meer oor hierdie e-boek

A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory.
Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.

Meer oor die skrywer

Michael T. Vaughn is Professor of Physics at Northeastern University in Boston and well known in particle theory for his contributions to quantum field theory especially in the derivation of two loop renormalization group equations for the Yukowa and scalar quartic couplings in Yang-Mills gauge theories and in softly broken supersymmetric theories. Professor Vaughn has taught graduate courses in mathematical physics at the University of Pennsylvania, Indiana University and Texas A&M University as well as at Northeastern.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.