Introduction to Mathematical Physics

· Venduto da John Wiley & Sons
Ebook
543
pagine

Informazioni su questo ebook

A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory.
Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.

Informazioni sull'autore

Michael T. Vaughn is Professor of Physics at Northeastern University in Boston and well known in particle theory for his contributions to quantum field theory especially in the derivation of two loop renormalization group equations for the Yukowa and scalar quartic couplings in Yang-Mills gauge theories and in softly broken supersymmetric theories. Professor Vaughn has taught graduate courses in mathematical physics at the University of Pennsylvania, Indiana University and Texas A&M University as well as at Northeastern.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.