Introduction to Random Graphs

· Cambridge University Press
E-book
483
Pages

À propos de cet e-book

From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject.

À propos de l'auteur

Alan Frieze is a Professor in the Department of Mathematical Sciences at Carnegie Mellon University, Pennsylvania. He has authored more than 300 publications in top journals and was invited to be a plenary speaker at the Seoul ICM 2014. In 1991 he received the Fulkerson prize in discrete mathematics.

Michał Karoński is a founder of the Discrete Mathematics Research group at Adam Mickiewicz University in Poznan, Poland. He has authored over 50 publications and currently serves as co-Editor-in-Chief of Random Structures and Algorithms.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.