Introduction to the $h$-Principle

·
· American Mathematical Soc.
eBook
206
Pages

About this eBook

One of the most powerful modern methods of solving partial differential equations is Gromov's $h$-principle. It has also been, traditionally, one of the most difficult to explain. This book is a broadly accessible exposition of the principle and its applications. The essence ofthe $h$-principle is the reduction of problems involving partial differential relations to problems of a purely homotopy-theoretic nature. Two famous examples of the $h$-principle are the Nash-Kuiper $C $-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology. Gromov transformed these examples into a powerful general method for proving the $h$-principle. Both of these examples and their explanations in terms of the $h$-principle are covered in detail in the book. The authors cover two main embodiments of the principle: holonomic approximation and convex integration.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.