Isometry groups of Lorentzian manifolds of finite volume and the local geometry of compact homogeneous Lorentz spaces

· Aus der Reihe: e-fellows.net stipendiaten-wissen · GRIN Verlag
電子書
131
頁數
符合資格

關於這本電子書

Diploma Thesis from the year 2011 in the subject Mathematics - Geometry, grade: 1,0, Humboldt-University of Berlin (Institut für Mathematik), language: English, abstract: Based on the work of Adams and Stuck as well as on the work of Zeghib, we classify the Lie groups which can act isometrically and locally effectively on Lorentzian manifolds of finite volume. In the case that the corresponding Lie algebra contains a direct summand isomorphic to the two-dimensional special linear algebra or to a twisted Heisenbergalgebra, we also describe the geometric structure of the manifolds if they are compact. Using these results, we investigate the local geometry of compact homogeneous Lorentz spaces whose isometry groups have non-compact connected components. It turns out that they all are reductive. We investigate the isotropy representation, curvatures and holonomy. Especially, we obtain that any Ricci-flat compact homogeneous Lorentz space is flat or has compact isometry group.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。