Robot Learning

The Springer International Series in Engineering and Computer Science

Book 233
Springer Science & Business Media
Free sample

Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action.
Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.
Read more
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Dec 6, 2012
Read more
Pages
240
Read more
ISBN
9781461531845
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Computers / Intelligence (AI) & Semantics
Technology & Engineering / Automation
Technology & Engineering / Manufacturing
Technology & Engineering / Robotics
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Multiprocessing: Trade-Offs in Computation and Communication presents an in-depth analysis of several commonly observed regular and irregular computations for multiprocessor systems. This book includes techniques which enable researchers and application developers to quantitatively determine the effects of algorithm data dependencies on execution time, on communication requirements, on processor utilization and on the speedups possible.
Starting with simple, two-dimensional, diamond-shaped directed acyclic graphs, the analysis is extended to more complex and higher dimensional directed acyclic graphs. The analysis allows for the quantification of the computation and communication costs and their interdependencies. The practical significance of these results on the performance of various data distribution schemes is clearly explained. Using these results, the performance of the parallel computations are formulated in an architecture independent fashion. These formulations allow for the parameterization of the architecture specitific entities such as the computation and communication rates. This type of parameterized performance analysis can be used at compile time or at run-time so as to achieve the most optimal distribution of the computations.
The material in Multiprocessing: Trade-Offs in Computation and Communication connects theory with practice, so that the inherent performance limitations in many computations can be understood, and practical methods can be devised that would assist in the development of software for scalable high performance systems.
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions
Multiprocessing: Trade-Offs in Computation and Communication presents an in-depth analysis of several commonly observed regular and irregular computations for multiprocessor systems. This book includes techniques which enable researchers and application developers to quantitatively determine the effects of algorithm data dependencies on execution time, on communication requirements, on processor utilization and on the speedups possible.
Starting with simple, two-dimensional, diamond-shaped directed acyclic graphs, the analysis is extended to more complex and higher dimensional directed acyclic graphs. The analysis allows for the quantification of the computation and communication costs and their interdependencies. The practical significance of these results on the performance of various data distribution schemes is clearly explained. Using these results, the performance of the parallel computations are formulated in an architecture independent fashion. These formulations allow for the parameterization of the architecture specitific entities such as the computation and communication rates. This type of parameterized performance analysis can be used at compile time or at run-time so as to achieve the most optimal distribution of the computations.
The material in Multiprocessing: Trade-Offs in Computation and Communication connects theory with practice, so that the inherent performance limitations in many computations can be understood, and practical methods can be devised that would assist in the development of software for scalable high performance systems.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.