Sequential Logic: Analysis and Synthesis

CRC Press
1
Free sample

Until now, there was no single resource for actual digital system design. Using both basic and advanced concepts, Sequential Logic: Analysis and Synthesis offers a thorough exposition of the analysis and synthesis of both synchronous and asynchronous sequential machines.

With 25 years of experience in designing computing equipment, the author stresses the practical design of state machines. He clearly delineates each step of the structured and rigorous design principles that can be applied to practical applications. The book begins by reviewing the analysis of combinatorial logic and Boolean algebra, and goes on to define sequential machines and discuss traditional and alternative methods for synthesizing synchronous sequential machines. The final chapters deal with asynchronous sequential machines and pulse-mode asynchronous sequential machines. Because this volume is technology-independent, these techniques can be used in a variety of fields, such as electrical and computer engineering as well as nanotechnology.

By presenting each method in detail, expounding on several corresponding examples, and providing over 500 useful figures, Sequential Logic is an excellent tutorial on analysis and synthesis procedures.
Read more
5.0
1 total
Loading...

Additional Information

Publisher
CRC Press
Read more
Published on
Jun 2, 2006
Read more
Pages
912
Read more
ISBN
9781420007855
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Computers / Computer Engineering
Computers / General
Computers / Microprocessors
Technology & Engineering / Electronics / Circuits / General
Technology & Engineering / Electronics / General
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Coming to grips with C++11 and C++14 is more than a matter of familiarizing yourself with the features they introduce (e.g., auto type declarations, move semantics, lambda expressions, and concurrency support). The challenge is learning to use those features effectively—so that your software is correct, efficient, maintainable, and portable. That’s where this practical book comes in. It describes how to write truly great software using C++11 and C++14—i.e. using modern C++.

Topics include:

The pros and cons of braced initialization, noexcept specifications, perfect forwarding, and smart pointer make functionsThe relationships among std::move, std::forward, rvalue references, and universal referencesTechniques for writing clear, correct, effective lambda expressionsHow std::atomic differs from volatile, how each should be used, and how they relate to C++'s concurrency APIHow best practices in "old" C++ programming (i.e., C++98) require revision for software development in modern C++

Effective Modern C++ follows the proven guideline-based, example-driven format of Scott Meyers' earlier books, but covers entirely new material.

"After I learned the C++ basics, I then learned how to use C++ in production code from Meyer's series of Effective C++ books. Effective Modern C++ is the most important how-to book for advice on key guidelines, styles, and idioms to use modern C++ effectively and well. Don't own it yet? Buy this one. Now".
-- Herb Sutter, Chair of ISO C++ Standards Committee and C++ Software Architect at Microsoft

Verilog Hardware Description Language (HDL) is the state-of-the-art method for designing digital and computer systems. Ideally suited to describe both combinational and clocked sequential arithmetic circuits, Verilog facilitates a clear relationship between the language syntax and the physical hardware. It provides a very easy-to-learn and practical means to model a digital system at many levels of abstraction.

Computer Arithmetic and Verilog HDL Fundamentals details the steps needed to master computer arithmetic for fixed-point, decimal, and floating-point number representations for all primary operations. Silvaco International’s SILOS, the Verilog simulator used in these pages, is simple to understand, yet powerful enough for any application. It encourages users to quickly prototype and de-bug any logic function and enables single-stepping through the Verilog source code. It also presents drag-and-drop abilities.

Introducing the three main modeling methods—dataflow, behavioral, and structural—this self-contained tutorial—

Covers the number systems of different radices, such as octal, decimal, hexadecimal, and binary-coded variations

Reviews logic design fundamentals, including Boolean algebra and minimization techniques for switching functions

Presents basic methods for fixed-point addition, subtraction, multiplication, and division, including the use of decimals in all four operations

Addresses floating-point addition and subtraction with several numerical examples and flowcharts that graphically illustrate steps required for true addition and subtraction for floating-point operands

Demonstrates floating-point division, including the generation of a zero-biased exponent

Designed for electrical and computer engineers and computer scientists, this book leaves nothing unfinished, carrying design examples through to completion. The goal is practical proficiency. To this end, each chapter includes problems of varying complexity to be designed by the reader.

The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals explains how to write programs in the X86 assembly language, the C programming language, and X86 assembly language modules embedded in a C program. A wealth of program design examples, including the complete code and outputs, help you grasp the concepts more easily. Where needed, the book also details the theory behind the design.

Learn the X86 Microprocessor Architecture and Commonly Used Instructions

Assembly language programming requires knowledge of number representations, as well as the architecture of the computer on which the language is being used. After covering the binary, octal, decimal, and hexadecimal number systems, the book presents the general architecture of the X86 microprocessor, individual addressing modes, stack operations, procedures, arrays, macros, and input/output operations. It highlights the most commonly used X86 assembly language instructions, including data transfer, branching and looping, logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal (BCD), and floating-point arithmetic instructions.

Get a Solid Foundation in a Language Commonly Used in Digital Hardware

Written for students in computer science and electrical, computer, and software engineering, the book assumes a basic background in C programming, digital logic design, and computer architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid foundation in assembly language for anyone working with the design of digital hardware.

Verilog Hardware Description Language (HDL) is the state-of-the-art method for designing digital and computer systems. Ideally suited to describe both combinational and clocked sequential arithmetic circuits, Verilog facilitates a clear relationship between the language syntax and the physical hardware. It provides a very easy-to-learn and practical means to model a digital system at many levels of abstraction.

Computer Arithmetic and Verilog HDL Fundamentals details the steps needed to master computer arithmetic for fixed-point, decimal, and floating-point number representations for all primary operations. Silvaco International’s SILOS, the Verilog simulator used in these pages, is simple to understand, yet powerful enough for any application. It encourages users to quickly prototype and de-bug any logic function and enables single-stepping through the Verilog source code. It also presents drag-and-drop abilities.

Introducing the three main modeling methods—dataflow, behavioral, and structural—this self-contained tutorial—

Covers the number systems of different radices, such as octal, decimal, hexadecimal, and binary-coded variations

Reviews logic design fundamentals, including Boolean algebra and minimization techniques for switching functions

Presents basic methods for fixed-point addition, subtraction, multiplication, and division, including the use of decimals in all four operations

Addresses floating-point addition and subtraction with several numerical examples and flowcharts that graphically illustrate steps required for true addition and subtraction for floating-point operands

Demonstrates floating-point division, including the generation of a zero-biased exponent

Designed for electrical and computer engineers and computer scientists, this book leaves nothing unfinished, carrying design examples through to completion. The goal is practical proficiency. To this end, each chapter includes problems of varying complexity to be designed by the reader.

The predominant language used in embedded microprocessors, assembly language lets you write programs that are typically faster and more compact than programs written in a high-level language and provide greater control over the program applications. Focusing on the languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals explains how to write programs in the X86 assembly language, the C programming language, and X86 assembly language modules embedded in a C program. A wealth of program design examples, including the complete code and outputs, help you grasp the concepts more easily. Where needed, the book also details the theory behind the design.

Learn the X86 Microprocessor Architecture and Commonly Used Instructions

Assembly language programming requires knowledge of number representations, as well as the architecture of the computer on which the language is being used. After covering the binary, octal, decimal, and hexadecimal number systems, the book presents the general architecture of the X86 microprocessor, individual addressing modes, stack operations, procedures, arrays, macros, and input/output operations. It highlights the most commonly used X86 assembly language instructions, including data transfer, branching and looping, logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal (BCD), and floating-point arithmetic instructions.

Get a Solid Foundation in a Language Commonly Used in Digital Hardware

Written for students in computer science and electrical, computer, and software engineering, the book assumes a basic background in C programming, digital logic design, and computer architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid foundation in assembly language for anyone working with the design of digital hardware.

Sequential Logic and Verilog HDL Fundamentals discusses the analysis and synthesis of synchronous and asynchronous sequential machines. These machines are implemented using Verilog Hardware Description Language (HDL), in accordance with the Institute of Electrical and Electronics Engineers (IEEE) Standard: 1364-1995.

The book concentrates on sequential logic design with a focus on the design of various Verilog HDL projects. Emphasis is placed on structured and rigorous design principles that can be applied to practical applications. Each step of the analysis and synthesis procedures is clearly delineated. Each method that is presented is expounded in sufficient detail with accompanying examples. Many analysis and synthesis examples use mixed-logic symbols incorporating both positive- and negative-input logic gates for NAND (not AND) and NOR (not OR) logic, while other examples utilize only positive-input logic gates. The use of mixed logic parallels the use of these symbols in the industry.

The book is intended to be a tutorial, and as such, is comprehensive and self-contained. All designs are carried through to completion—nothing is left unfinished or partially designed. Each chapter contains numerous problems of varying complexity to be designed by the reader using Verilog HDL design techniques. The Verilog HDL designs include the design module, the test bench module that tests the design for correct functionality, the outputs obtained from the test bench, and the waveforms obtained from the test bench.

Sequential Logic and Verilog HDL Fundamentals presents Verilog HDL with numerous design examples to help the reader thoroughly understand this popular hardware description language. The book is designed for practicing electrical engineers, computer engineers, and computer scientists; for graduate students in electrical engineering, computer engineering, and computer science; and for senior-level undergraduate students.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.