Sets, Functions, and Logic: An Introduction to Abstract Mathematics, Third Edition, Edition 3

CRC Press
Free sample

Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students.

Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead.

Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read...and enjoy...and learn from.

About the Author

Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,.

Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as "The Math Guy" on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and computers for the British newspaper The Guardian.
Read more

Additional Information

CRC Press
Read more
Published on
Oct 3, 2018
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Mathematics / General
Mathematics / Set Theory
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in set logic.
Contents include: Sets and Relations — Cantor's concept of a set, etc.
Natural Number Sequence — Zorn's Lemma, etc.
Extension of Natural Numbers to Real Numbers
Logic — the Statement and Predicate Calculus, etc.
Informal Axiomatic Mathematics
Boolean AlgebraInformal Axiomatic Set TheorySeveral Algebraic Theories — Rings, Integral Domains, Fields, etc.
First-Order Theories — Metamathematics, etc.
Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system.
Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work.
"Professor Stoll . . . has given us one of the best introductory texts we have seen." — Cosmos.
"In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)." — Mathematical Reviews.
This enlightening survey of mathematical concept formation holds a natural appeal to philosophically minded readers, and no formal training in mathematics is necessary to appreciate its clear exposition of mathematic fundamentals. Rather than a system of theorems with completely developed proofs or examples of applications, readers will encounter a coherent presentation of mathematical ideas that begins with the natural numbers and basic laws of arithmetic and progresses to the problems of the real-number continuum and concepts of the calculus.
Contents include examinations of the various types of numbers and a criticism of the extension of numbers; arithmetic, geometry, and the rigorous construction of the theory of integers; the rational numbers, the foundation of the arithmetic of natural numbers, and the rigorous construction of elementary arithmetic. Advanced topics encompass the principle of complete induction; the limit and point of accumulation; operating with sequences and differential quotient; remarkable curves; real numbers and ultrareal numbers; and complex and hypercomplex numbers.
In issues of mathematical philosophy, the author explores basic theoretical differences that have been a source of debate among the most prominent scholars and on which contemporary mathematicians remain divided. "With exceptional clarity, but with no evasion of essential ideas, the author outlines the fundamental structure of mathematics." — Carl B. Boyer, Brooklyn College. 27 figures. Index.
In 1202, a 32-year old Italian finished one of the most influential books of all time, which introduced modern arithmetic to Western Europe. Devised in India in the 7th and 8th centuries and brought to North Africa by Muslim traders, the Hindu-Arabic system helped transform the West into the dominant force in science, technology, and commerce, leaving behind Muslim cultures which had long known it but had failed to see its potential.
The young Italian, Leonardo of Pisa (better known today as Fibonacci), had learned the Hindu number system when he traveled to North Africa with his father, a customs agent. The book he created was Liber abbaci, the "Book of Calculation," and the revolution that followed its publication was enormous. Arithmetic made it possible for ordinary people to buy and sell goods, convert currencies, and keep accurate records of possessions more readily than ever before. Liber abbaci's publication led directly to large-scale international commerce and the scientific revolution of the Renaissance.
Yet despite the ubiquity of his discoveries, Leonardo of Pisa remains an enigma. His name is best known today in association with an exercise in Liber abbaci whose solution gives rise to a sequence of numbers--the Fibonacci sequence--used by some to predict the rise and fall of financial markets, and evident in myriad biological structures.
One of the great math popularizers of our time, Keith Devlin recreates the life and enduring legacy of an overlooked genius, and in the process makes clear how central numbers and mathematics are to our daily lives.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.