Lectures on Hyperbolic Geometry

·
· Springer Science & Business Media
電子書
330
頁數

關於這本電子書

In recent years hyperbolic geometry has been the object and the preparation for extensive study that has produced important and often amazing results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it reaches recent developments of the theory, the book is mainly addressed to graduate-level students approaching research, but it will also be a helpful and ready-to-use tool to the mature researcher. After collecting some classical material about the geometry of the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (of which a complete proof is given following Gromov and Thurston) and Margulis' lemma. These results form the basis for the study of the space of the hyperbolic manifolds in all dimensions (Chabauty and geometric topology); a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory. A large part is devoted to the three-dimensional case: a complete and elementary proof of the hyperbolic surgery theorem is given based on the possibility of representing three manifolds as glued ideal tetrahedra. The last chapter deals with some related ideas and generalizations (bounded cohomology, flat fiber bundles, amenable groups). This is the first book to collect this material together from numerous scattered sources to give a detailed presentation at a unified level accessible to novice readers.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。