Variational Calculus, Optimal Control and Applications

International Series of Numerical Mathematics

Free sample

The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.
Read more
Collapse
Loading...

Additional Information

Publisher
Birkhäuser
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
342
Read more
Collapse
ISBN
9783034888028
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Calculus
Mathematics / Mathematical Analysis
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.
New trends in free boundary problems and new mathematical tools together with broadening areas of applications have led to attempts at presenting the state of art of the field in a unified way. In this monograph we focus on formal models representing contact problems for elastic and elastoplastic plates and shells. New approaches open up new fields for research. For example, in crack theory a systematic treatment of mathematical modelling and optimization of problems with cracks is required. Similarly, sensitivity analysis of solutions to problems subjected to perturbations, which forms an important part of the problem solving process, is the source of many open questions. Two aspects of sensitivity analysis, namely the behaviour of solutions under deformations of the domain of integration and perturbations of surfaces seem to be particularly demanding in this context. On writing this book we aimed at providing the reader with a self-contained study of the mathematical modelling in mechanics. Much attention is given to modelling of typical constructions applied in many different areas. Plates and shallow shells which are widely used in the aerospace industry provide good exam ples. Allied optimization problems consist in finding the constructions which are of maximal strength (endurance) and satisfy some other requirements, ego weight limitations. Mathematical modelling of plates and shells always requires a reasonable compromise between two principal needs. One of them is the accuracy of the de scription of a physical phenomenon (as required by the principles of mechanics).
This IMA Volume in Mathematics and its Applications NONSMOOTH ANALYSIS AND GEOMETRIC METHODS IN DETERMINISTIC OPTIMAL CONTROL is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory. " The purpose of this workshop was to concentrate on powerful mathematical techniques that have been de veloped in deterministic optimal control theory after the basic foundations of the theory (existence theorems, maximum principle, dynamic program ming, sufficiency theorems for sufficiently smooth fields of extremals) were laid out in the 1960s. These advanced techniques make it possible to derive much more detailed information about the structure of solutions than could be obtained in the past, and they support new algorithmic approaches to the calculation of such solutions. We thank Boris S. Mordukhovich and Hector J. Sussmann for organiz ing the workshop and editing the proceedings. We also take this oppor tunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. v PREFACE This volume contains the proceedings of the workshop on Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control held at the Institute for Mathematics and its Applications on February 8-17, 1993 during a special year devoted to Control Theory and its Applications. The workshop-whose organizing committee consisted of V. J urdjevic, B. S. Mordukhovich, R. T. Rockafellar, and H. J.
Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus concepts Explores sequences, series, and graphing common functions Instructs you how to approximate area with integration Features things to remember, things to forget, and things you can't get away with

Stop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

NEW YORK TIMES BESTSELLER
“Marvelous . . . an array of witty and astonishing stories . . . to illuminate how calculus has helped bring into being our contemporary world.”—The Washington Post

From preeminent math personality and author of The Joy of x, a brilliant and endlessly appealing explanation of calculus – how it works and why it makes our lives immeasurably better. 
 
Without calculus, we wouldn’t have cell phones, TV, GPS, or ultrasound. We wouldn’t have unraveled DNA or discovered Neptune or figured out how to put 5,000 songs in your pocket. 
 
Though many of us were scared away from this essential, engrossing subject in high school and college, Steven Strogatz’s brilliantly creative, down‐to‐earth history shows that calculus is not about complexity; it’s about simplicity. It harnesses an unreal number—infinity—to tackle real‐world problems, breaking them down into easier ones and then reassembling the answers into solutions that feel miraculous. 
 
Infinite Powers recounts how calculus tantalized and thrilled its inventors, starting with its first glimmers in ancient Greece and bringing us right up to the discovery of gravitational waves (a phenomenon predicted by calculus). Strogatz reveals how this form of math rose to the challenges of each age: how to determine the area of a circle with only sand and a stick; how to explain why Mars goes “backwards” sometimes; how to make electricity with magnets; how to ensure your rocket doesn’t miss the moon; how to turn the tide in the fight against AIDS. 
 
As Strogatz proves, calculus is truly the language of the universe. By unveiling the principles of that language, Infinite Powers makes us marvel at the world anew. 
This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.