Machine Learning Engineering in Action

· 書商:Simon and Schuster
電子書
576
符合資格

關於本電子書

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production.

In Machine Learning Engineering in Action, you will learn:

Evaluating data science problems to find the most effective solution
Scoping a machine learning project for usage expectations and budget
Process techniques that minimize wasted effort and speed up production
Assessing a project using standardized prototyping work and statistical validation
Choosing the right technologies and tools for your project
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices

Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks.

Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code.

About the technology
Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production.

About the book
Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects.

What's inside

Scoping a machine learning project for usage expectations and budget
Choosing the right technologies for your design
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices

About the reader
For data scientists who know machine learning and the basics of object-oriented programming.

About the author
Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。