Machine Learning of Heuristics

·
· Stanford University
電子書
235
頁數

關於這本電子書

First, a method of representing heuristics as production rules is developed which facilitates dynamic manipulation of the heuristics by the program embodying them. This representation technique permits separation of the heuristics from the program proper, provides clear identification of individual heuristics, is compatible with generalization schemes, and expedites the process of obtaining decisions from the system. Second, procedures are developed which permit a problem-solving program employing heuristics in production rule form to learn to improve its performance by evaluating and modifying existing heuristics and hypothesizing new ones, either during a special training process or during normal program operation. Third, the abovementioned representation and learning techniques are reformulated in the light of existing stimulus-response theories of learning, and five different S-R models of human heuristic learning in problem-solving environments are constructed and examined in detail. Experimental designs for testing these information processing models are also proposed and discussed. Finally, the feasibility of using the aforementioned representation and learning techniques in a complex problem-solving situation is demonstrated by applying these techniques to the problem of making the bet decision in draw poker. This application, involving the construction of a computer program, demonstrates that few production rules or training trials are needed to produce a thorough and effective set of heuristics for draw poker. (Author).

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。