Meta-attributes and Artificial Networking: A New Tool for Seismic Interpretation

·
· 판매자: John Wiley & Sons
eBook
288
페이지

eBook 정보

Applying machine learning to the interpretation of seismic data

Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology.

Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data.

Volume highlights include:

  • Historic evolution of seismic attributes
  • Overview of meta-attributes and how to design them
  • Workflows for the computation of meta-attributes from seismic data
  • Case studies demonstrating the application of meta-attributes
  • Sets of exercises with solutions provided
  • Sample data sets available for hands-on exercises

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

저자 정보

Kalachand Sain, Wadia Institute of Himalayan Geology, India

Priyadarshi Chinmoy Kumar, Wadia Institute of Himalayan Geology, India

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.