Meta-attributes and Artificial Networking: A New Tool for Seismic Interpretation

·
· 書商:John Wiley & Sons
電子書
288

關於本電子書

Applying machine learning to the interpretation of seismic data

Seismic data gathered on the surface can be used to generate numerous seismic attributes that enable better understanding of subsurface geological structures and stratigraphic features. With an ever-increasing volume of seismic data available, machine learning augments faster data processing and interpretation of complex subsurface geology.

Meta-Attributes and Artificial Networking: A New Tool for Seismic Interpretation explores how artificial neural networks can be used for the automatic interpretation of 2D and 3D seismic data.

Volume highlights include:

  • Historic evolution of seismic attributes
  • Overview of meta-attributes and how to design them
  • Workflows for the computation of meta-attributes from seismic data
  • Case studies demonstrating the application of meta-attributes
  • Sets of exercises with solutions provided
  • Sample data sets available for hands-on exercises

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

關於作者

Kalachand Sain, Wadia Institute of Himalayan Geology, India

Priyadarshi Chinmoy Kumar, Wadia Institute of Himalayan Geology, India

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。