Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$

·
· American Mathematical Soc.
eBook
123
Halaman

Tentang eBook ini

There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.