Practical Convolutional Neural Networks: Implement advanced deep learning models using Python

· ·
· Packt Publishing Ltd
Ebook
218
Pages

About this ebook

One stop guide to implementing award-winning, and cutting-edge CNN architecturesKey FeaturesFast-paced guide with use cases and real-world examples to get well versed with CNN techniquesImplement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and moreImplement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention modelsBook Description

Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models.

This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.

Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision.

By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets.

What you will learnFrom CNN basic building blocks to advanced concepts understand practical areas they can be applied toBuild an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize itLearn different algorithms that can be applied to Object Detection, and Instance Segmentation Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracyUnderstand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and moreUnderstand the working of generative adversarial networks and how it can create new, unseen imagesWho this book is for

This book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.

About the author

Mohit Sewak is a Sr. Cognitive Data Scientist with IBM, and a Ph.D. scholar in AI & CS with BITS Pilani. He holds several Patents and Publications in AI, Deep Learning, and Machine Learning. He has been the Lead Data Scientist for some of the very successful global AI/ ML software and Industry solutions and had been earlier engaged with solutioning and research for Watson Cognitive Commerce product line. He has 14 years of very rich experience in architecting and solutioning with technologies like TensorFlow, Torch, Caffe, Theano, Keras, Watson and others. Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a Researcher at the Insight Centre for Data Analytics, Ireland. Earlier, he worked as a Lead Engineer at Samsung Electronics, Korea. He has 9 years of R&D experience with C++, Java, R, Scala, and Python. He has published several research papers concerning bioinformatics, big data, and deep learning. He has practical working experience with Spark, Zeppelin, Hadoop, Keras, Scikit-Learn, TensorFlow, DeepLearning4j, MXNet, and H2O. Pradeep Pujari is machine learning engineer at Walmart Labs and distinguished member of ACM. His core domain expertise is in information retrieval, machine learning and natural language processing. In off hours, he loves exploring AI technologies, enjoys reading and mentoring.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.