Natural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production.
To start with, you'll understand the importance of NLP in today's business applications and learn the features of Amazon Comprehend and Amazon Textract to build NLP models using Python and Jupyter Notebooks. The book then shows you how to integrate AI in applications for accelerating business outcomes with just a few lines of code. Throughout the book, you'll cover use cases such as smart text search, setting up compliance and controls when processing confidential documents, real-time text analytics, and much more to understand various NLP scenarios. You'll deploy and monitor scalable NLP models in production for real-time and batch requirements. As you advance, you'll explore strategies for including humans in the loop for different purposes in a document processing workflow. Moreover, you'll learn best practices for auto-scaling your NLP inference for enterprise traffic.
Whether you're new to ML or an experienced practitioner, by the end of this NLP book, you'll have the confidence to use AWS AI services to build powerful NLP applications.
What you will learnAutomate various NLP workflows on AWS to accelerate business outcomesUse Amazon Textract for text, tables, and handwriting recognition from images and PDF filesGain insights from unstructured text in the form of sentiment analysis, topic modeling, and more using Amazon ComprehendSet up end-to-end document processing pipelines to understand the role of humans in the loopDevelop NLP-based intelligent search solutions with just a few lines of codeCreate both real-time and batch document processing pipelines using PythonWho this book is forIf you're an NLP developer or data scientist looking to get started with AWS AI services to implement various NLP scenarios quickly, this book is for you. It will show you how easy it is to integrate AI in applications with just a few lines of code. A basic understanding of machine learning (ML) concepts is necessary to understand the concepts covered. Experience with Jupyter notebooks and Python will be helpful.
Mona M is a senior AI/ML specialist solutions architect at AWS. She is a highly skilled IT professional, with more than 10 years' experience in software design, development, and integration across diverse work environments. As an AWS solutions architect, her role is to ensure customer success in building applications and services on the AWS platform. She is responsible for crafting a highly scalable, flexible, and resilient cloud architecture that addresses customer business problems. She has published multiple blogs on AI and NLP on the AWS AI channel along with research papers on AI-powered search solutions.
Premkumar Rangarajan is an enterprise solutions architect, specializing in AI/ML at Amazon Web Services. He has 25 years of experience in the IT industry in a variety of roles, including delivery lead, integration specialist, and enterprise architect. He has significant architecture and management experience in delivering large-scale programs across various industries and platforms. He is passionate about helping customers solve ML and AI problems.
Julien Simon is a Principal Developer Advocate for AI & Machine Learning at Amazon Web Services. He focuses on helping developers and enterprises bring their ideas to life. He frequently speaks at conferences, blogs on the AWS Blog and on Medium, and he also runs an AI/ML podcast. Prior to joining AWS, Julien served for 10 years as CTO/VP Engineering in top-tier web startups where he led large Software and Ops teams in charge of thousands of servers worldwide. In the process, he fought his way through a wide range of technical, business and procurement issues, which helped him gain a deep understanding of physical infrastructure, its limitations and how cloud computing can help.