Nonlinear Functional Evolutions in Banach Spaces

· Springer Science & Business Media
Liburu elektronikoa
352
orri

Liburu elektroniko honi buruz

There are many problems in nonlinear partial differential equations with delay which arise from, for example, physical models, biochemical models, and social models. Some of them can be formulated as nonlinear functional evolutions in infinite-dimensional abstract spaces. Since Webb (1976) considered autonomous nonlinear functional evo lutions in infinite-dimensional real Hilbert spaces, many nonlinear an alysts have studied for the last nearly three decades autonomous non linear functional evolutions, non-autonomous nonlinear functional evo lutions and quasi-nonlinear functional evolutions in infinite-dimensional real Banach spaces. The techniques developed for nonlinear evolutions in infinite-dimensional real Banach spaces are applied. This book gives a detailed account of the recent state of theory of nonlinear functional evolutions associated with accretive operators in infinite-dimensional real Banach spaces. Existence, uniqueness, and stability for 'solutions' of nonlinear func tional evolutions are considered. Solutions are presented by nonlinear semigroups, or evolution operators, or methods of lines, or inequalities by Benilan. This book is divided into four chapters. Chapter 1 contains some basic concepts and results in the theory of nonlinear operators and nonlinear evolutions in real Banach spaces, that play very important roles in the following three chapters. Chapter 2 deals with autonomous nonlinear functional evolutions in infinite-dimensional real Banach spaces. Chapter 3 is devoted to non-autonomous nonlinear functional evolu tions in infinite-dimensional real Banach spaces. Finally, in Chapter 4 quasi-nonlinear functional evolutions are con sidered in infinite-dimensional real Banach spaces.

Baloratu liburu elektroniko hau

Eman iezaguzu iritzia.

Irakurtzeko informazioa

Telefono adimendunak eta tabletak
Instalatu Android eta iPad/iPhone gailuetarako Google Play Liburuak aplikazioa. Zure kontuarekin automatikoki sinkronizatzen da, eta konexioarekin nahiz gabe irakurri ahal izango dituzu liburuak, edonon zaudela ere.
Ordenagailu eramangarriak eta mahaigainekoak
Google Play-n erositako audio-liburuak entzuteko aukera ematen du ordenagailuko web-arakatzailearen bidez.
Irakurgailu elektronikoak eta bestelako gailuak
Tinta elektronikoa duten gailuetan (adibidez, Kobo-ko irakurgailu elektronikoak) liburuak irakurtzeko, fitxategi bat deskargatu beharko duzu, eta hura gailura transferitu. Jarraitu laguntza-zentroko argibide xehatuei fitxategiak irakurgailu elektroniko bateragarrietara transferitzeko.