Notes on Introductory Combinatorics

· ·
· Springer Science & Business Media
āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•
193
āŠŠāŦ‡āМ

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ• āŠĩāŠŋāŠķāŦ‡

In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•āŠĻāŦ‡ āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ†āŠŠāŦ‹

āŠĪāŠŪāŦ‡ āŠķāŦāŠ‚ āŠĩāŠŋāŠšāŠūāŠ°āŦ‹ āŠ›āŦ‹ āŠ…āŠŪāŠĻāŦ‡ āŠœāŠĢāŠūāŠĩāŦ‹.

āŠŪāŠūāŠđāŠŋāŠĪāŦ€ āŠĩāŠūāŠ‚āŠšāŠĩāŦ€

āŠļāŦāŠŪāŠūāŠ°āŦāПāŠŦāŦ‹āŠĻ āŠ…āŠĻāŦ‡ āŠŸāŦ…āŠŽāŦāŠēāŦ‡āП
Android āŠ…āŠĻāŦ‡ iPad/iPhone āŠŪāŠūāŠŸāŦ‡ Google Play Books āŠāŠŠ āŠ‡āŠĻāŦāŠļāŦāПāŦ‰āŠē āŠ•āŠ°āŦ‹. āŠĪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠāŠ•āŠūāŠ‰āŠĻāŦāП āŠļāŠūāŠĨāŦ‡ āŠ‘āŠŸāŦ‹āŠŪāŦ…āПāŠŋāŠ• āŠ°āŦ€āŠĪāŦ‡ āŠļāŠŋāŠ‚āŠ• āŠĨāŠūāŠŊ āŠ›āŦ‡ āŠ…āŠĻāŦ‡ āŠĪāŠŪāŠĻāŦ‡ āŠœāŦāŠŊāŠūāŠ‚ āŠŠāŠĢ āŠđāŦ‹ āŠĪāŦāŠŊāŠūāŠ‚ āŠĪāŠŪāŠĻāŦ‡ āŠ‘āŠĻāŠēāŠūāŠ‡āŠĻ āŠ…āŠĨāŠĩāŠū āŠ‘āŠŦāŠēāŠūāŠ‡āŠĻ āŠĩāŠūāŠ‚āŠšāŠĩāŠūāŠĻāŦ€ āŠŪāŠ‚āŠœāŦ‚āаāŦ€ āŠ†āŠŠāŦ‡ āŠ›āŦ‡.
āŠēāŦ…āŠŠāŠŸāŦ‰āŠŠ āŠ…āŠĻāŦ‡ āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°
Google Play āŠŠāŠ° āŠ–āŠ°āŦ€āŠĶāŦ‡āŠē āŠ‘āŠĄāŠŋāŠ“āŠŽāŦāŠ•āŠĻāŦ‡ āŠĪāŠŪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°āŠĻāŠū āŠĩāŦ‡āŠŽ āŠŽāŦāаāŠūāŠ‰āŠāŠ°āŠĻāŦ‹ āŠ‰āŠŠāŠŊāŦ‹āŠ— āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠļāŠūāŠ‚āŠ­āŠģāŦ€ āŠķāŠ•āŦ‹ āŠ›āŦ‹.
eReaders āŠ…āŠĻāŦ‡ āŠ…āŠĻāŦāŠŊ āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ
Kobo āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠœāŦ‡āŠĩāŠū āŠ‡-āŠ‡āŠ‚āŠ• āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠĩāŠūāŠ‚āŠšāŠĩāŠū āŠŪāŠūāŠŸāŦ‡, āŠĪāŠŪāŠūāŠ°āŦ‡ āŠŦāŠūāŠ‡āŠēāŠĻāŦ‡ āŠĄāŠūāŠ‰āŠĻāŠēāŦ‹āŠĄ āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠŸāŦāаāŠūāŠĻāŦāŠļāŠŦāŠ° āŠ•āŠ°āŠĩāŠūāŠĻāŦ€ āŠœāŠ°āŦ‚āа āŠŠāŠĄāŠķāŦ‡. āŠļāŠŠāŦ‹āаāŦāПāŦ‡āŠĄ āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠŠāŠ° āŠŦāŠūāŠ‡āŠēāŦ‹ āŠŸāŦāаāŠūāŠĻāŦāŠļāŦāŠŦāŠ° āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠļāŠđāŠūāŠŊāŠĪāŠū āŠ•āŦ‡āŠĻāŦāŠĶāŦāаāŠĻāŦ€ āŠĩāŠŋāŠ—āŠĪāŠĩāŠūāŠ° āŠļāŦ‚āКāŠĻāŠūāŠ“ āŠ…āŠĻāŦāŠļāŠ°āŦ‹.