Numerical Ranges of Hilbert Space Operators

·
· Encyclopedia of Mathematics and its Applications Livre 179 · Cambridge University Press
Ebook
566
Pages

À propos de cet ebook

Starting with elementary operator theory and matrix analysis, this book introduces the basic properties of the numerical range and gradually builds up the whole numerical range theory. Over 400 assorted problems, ranging from routine exercises to published research results, give you the chance to put the theory into practice and test your understanding. Interspersed throughout the text are numerous comments and references, allowing you to discover related developments and to pursue areas of interest in the literature. Also included is an appendix on basic convexity properties on the Euclidean space. Targeted at graduate students as well as researchers interested in functional analysis, this book provides a comprehensive coverage of classic and recent works on the numerical range theory. It serves as an accessible entry point into this lively and exciting research area.

Quelques mots sur l'auteur

Hwa-Long Gau is Professor in the Department of Mathematics at National Central University, Taiwan. Together with Pei Yuan Wu, he has co-authored over 40 publications on numerical range problems. One of them, Zero-dilation index of a finite matrix (2014), is currently the most-downloaded article in 'Linear Algebra and its Applications'.

Pei Yuan Wu is Professor Emeritus in the Department of Applied Mathematics of National Chiao Tung University. He has been working in operator theory and matrix analysis for 45 years, recently focusing on the numerical ranges of operators and matrices. He was awarded the 16th Béla Szőkefalvi-Nagy Medal by the Bolyai Institute of University of Szeged in 2015.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.