On Riemann's Theory of Algebraic Functions and Their Integrals: A Supplement to the Usual Treatises

· Courier Dover Publications
电子书
96

关于此电子书

A great researcher, writer, and teacher in an era of tremendous mathematical ferment, Felix Klein (1849–1925) occupies a prominent place in the history of mathematics. His many talents included an ability to express complicated mathematical ideas directly and comprehensively, and this book, a consideration of the investigations in the first part of Riemann's Theory of Abelian Functions, is a prime example of his expository powers.
The treatment introduces Riemann's approach to multiple-value functions and the geometrical representation of these functions by what later became known as Riemann surfaces. It further concentrates on the kinds of functions that can be defined on these surfaces, confining the treatment to rational functions and their integrals. The text then demonstrates how Riemann's mathematical ideas about Abelian integrals can be arrived at by thinking in terms of the flow of electric current on surfaces. Klein's primary concern is preserving the sequence of thought and offering intuitive explanations of Riemann's notions, rather than furnishing detailed proofs. Deeply significant in the area of complex functions, this work constitutes one of the best introductions to the origins of topological problems.

作者简介

One of the greatest German mathematicians of his era, Felix Klein (1849–1925) taught at the University of Göttingen from 1887 until his retirement in 1913. He made major contributions to many areas of mathematics, including group theory, complex analysis, and non-Euclidean geometry. Dover also publishes Klein's classic two-volume work, Elementary Mathematics from an Advanced Standpoint, part one of which focuses on geometry and part two on arithmetic, algebra, and analysis.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。