Operator Commutation Relations: Commutation Relations for Operators, Semigroups, and Resolvents with Applications to Mathematical Physics and Representations of Lie Groups

·
· Mathematics and Its Applications Libro 14 · Springer Science & Business Media
Libro electrónico
493
Páxinas

Acerca deste libro electrónico

In his Retiring Presidential address, delivered before the Annual Meeting of The American Mathematical Society on December, 1948, the late Professor Einar Hille spoke on his recent results on the Lie theory of semigroups of linear transformations, . . • "So far only commutative operators have been considered and the product law . . . is the simplest possible. The non-commutative case has resisted numerous attacks in the past and it is only a few months ago that any headway was made with this problem. I shall have the pleasure of outlining the new theory here; it is a blend of the classical theory of Lie groups with the recent theory of one-parameter semigroups. " The list of references in the subsequent publication of Hille's address (Bull. Amer. Math •. Soc. 56 (1950)) includes pioneering papers of I. E. Segal, I. M. Gelfand, and K. Yosida. In the following three decades the subject grew tremendously in vitality, incorporating a number of different fields of mathematical analysis. Early papers of V. Bargmann, I. E. Segal, L. G~ding, Harish-Chandra, I. M. Singer, R. Langlands, B. Konstant, and E. Nelson developed the theoretical basis for later work in a variety of different applications: Mathematical physics, astronomy, partial differential equations, operator algebras, dynamical systems, geometry, and, most recently, stochastic filtering theory. As it turned out, of course, the Lie groups, rather than the semigroups, provided the focus of attention.

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de axuda para transferir ficheiros a lectores electrónicos admitidos.