Optimal Interconnection Trees in the Plane: Theory, Algorithms and Applications

·
· Algorithms and Combinatorics 第 29 冊 · Springer
電子書
344
頁數

關於這本電子書

This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.

Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.

The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.

關於作者

Marcus Brazil is Associate Professor and Reader at the Melbourne School of Engineering, The University of Melbourne, with a background in pure mathematics. He has worked on Steiner trees and network optimization problems for about 18 years, and has written more than 60 papers in this area, both on the theory of optimal network design and on industrial applications to Wireless Sensor Networks, Telecommunications, VLSI Physical Design, and Underground Mining Planning.

Martin Zachariasen is Head of Department and Professor at the Department of Computer Science, University of Copenhagen. He has worked on heuristics and exact methods for classical NP-hard problems, such as the geometric Steiner Tree Problem, as well as other optimization problems. His general research interests are in experimental algorithmics and computational combinatorial optimization, in particular related to VLSI design. As well as writing more than 40 papers on these topics, he is one of the developers of GeoSteiner, which is by far the most efficient software for solving a range of geometric Steiner tree problems.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。