Outlier Detection in Python

· 「Simon and Schuster」から販売
電子書籍
560
ページ
利用可能

この電子書籍について

Learn how to identify the unusual, interesting, extreme, or inaccurate parts of your data.

Data scientists have two main tasks: finding patterns in data and finding the exceptions. These outliers are often the most informative parts of data, revealing hidden insights, novel patterns, and potential problems. Outlier Detection in Python is a practical guide to spotting the parts of a dataset that deviate from the norm, even when they're hidden or intertwined among the expected data points.

In Outlier Detection in Python you'll learn how to:

• Use standard Python libraries to identify outliers
• Select the most appropriate detection methods
• Combine multiple outlier detection methods for improved results
• Interpret your results effectively
• Work with numeric, categorical, time series, and text data

Outlier detection is a vital tool for modern business, whether it's discovering new products, expanding markets, or flagging fraud and other suspicious activities. This guide presents the core tools for outlier detection, as well as techniques utilizing the Python data stack familiar to data scientists. To get started, you'll only need a basic understanding of statistics and the Python data ecosystem.

About the technology

Outliers—values that appear inconsistent with the rest of your data—can be the key to identifying fraud, performing a security audit, spotting bot activity, or just assessing the quality of a dataset. This unique guide introduces the outlier detection tools, techniques, and algorithms you’ll need to find, understand, and respond to the anomalies in your data.

About the book

Outlier Detection in Python illustrates the principles and practices of outlier detection with diverse real-world examples including social media, finance, network logs, and other important domains. You’ll explore a comprehensive set of statistical methods and machine learning approaches to identify and interpret the unexpected values in tabular, text, time series, and image data. Along the way, you’ll explore scikit-learn and PyOD, apply key OD algorithms, and add some high value techniques for real world OD scenarios to your toolkit.

What's inside

• Python libraries to identify outliers
• Combine outlier detection methods
• Interpret your results

About the reader

For Python programmers familiar with tools like pandas and NumPy, and the basics of statistics.

About the author

Brett Kennedy is a data scientist with over thirty years’ experience in software development and data science.

Table fo Contents

Part 1
1 Introducing outlier detection
2 Simple outlier detection
3 Machine learning-based outlier detection
4 The outlier detection process
Part 2
5 Outlier detection using scikit-learn
6 The PyOD library
7 Additional libraries and algorithms for outlier detection
Part 3
8 Evaluating detectors and parameters
9 Working with specific data types
10 Handling very large and very small datasets
11 Synthetic data for outlier detection
12 Collective outliers
13 Explainable outlier detection
14 Ensembles of outlier detectors
15 Working with outlier detection predictions
Part 4
16 Deep learning-based outlier detection
17 Time-series data

著者について

Brett Kennedy is a data scientist with over thirty years’ experience in software development and data science. He has worked in outlier detection related to financial auditing, fraud detection, and social media analysis. He previously led a research team focusing on outlier detection.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。