Optimization in Function Spaces: With Stability Considerations in Orlicz Spaces

Walter de Gruyter
Free sample

This is an essentially self-contained book on the theory of convex functions and convex optimization in Banach spaces, with a special interest in Orlicz spaces.

Approximate algorithms based on the stability principles and the solution of the corresponding nonlinear equations are developed in this text. A synopsis of the geometry of Banach spaces, aspects of stability and the duality of different levels of differentiability and convexity is developed. A particular emphasis is placed on the geometrical aspects of strong solvability of a convex optimization problem: it turns out that this property is equivalent to local uniform convexity of the corresponding convex function. This treatise also provides a novel approach to the fundamental theorems of Variational Calculus based on the principle of pointwise minimization of the Lagrangian on the one hand and convexification by quadratic supplements using the classical Legendre-Ricatti equation on the other.

The reader should be familiar with the concepts of mathematical analysis and linear algebra. Some awareness of the principles of measure theory will turn out to be helpful. The book is suitable for students of the second half of undergraduate studies, and it provides a rich set of material for a master course on linear and nonlinear functional analysis. Additionally it offers novel aspects at the advanced level.

From the contents:

  • Approximation and Polya Algorithms in Orlicz Spaces
  • Convex Sets and Convex Functions
  • Numerical Treatment of Non-linear Equations and Optimization Problems
  • Stability and Two-stage Optimization Problems
  • Orlicz Spaces, Orlicz Norm and Duality
  • Differentiability and Convexity in Orlicz Spaces
  • Variational Calculus
Read more

About the author

Peter Kosmol,Christian Albrechts University, Kiel, Germany;Dieter Müller-Wichards,Hamburg University of Applied Sciences, Germany.

Read more



Additional Information

Walter de Gruyter
Read more
Published on
Feb 28, 2011
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Mathematics / Functional Analysis
Mathematics / General
Mathematics / Mathematical Analysis
Mathematics / Research
Mathematics / Study & Teaching
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.

The Magic of Math is the math book you wish you had in school. Using a delightful assortment of examples—from ice cream scoops and poker hands to measuring mountains and making magic squares—this book empowers you to see the beauty, simplicity, and truly magical properties behind those formulas and equations that once left your head spinning. You'll learn the key ideas of classic areas of mathematics like arithmetic, algebra, geometry, trigonometry, and calculus, but you'll also have fun fooling around with Fibonacci numbers, investigating infinity, and marveling over mathematical magic tricks that will make you look like a math genius!

A mathematician who is known throughout the world as the “mathemagician,” Arthur Benjamin mixes mathematics and magic to make the subject fun, attractive, and easy to understand. In The Magic of Math, Benjamin does more than just teach skills: with a tip of his magic hat, he takes you on as his apprentice to teach you how to appreciate math the way he does. He motivates you to learn something new about how to solve for x, because there is real pleasure to be found in the solution to a challenging problem or in using numbers to do something useful. But what he really wants you to do is be able to figure out why, for that's where you'll find the real beauty, power, and magic of math.

If you are already someone who likes math, this book will dazzle and amuse you. If you never particularly liked or understood math, Benjamin will enlighten you and—with a wave of his magic wand—turn you into a math lover.
Throughout history, thinkers from mathematicians to theologians have pondered the mysterious relationship between numbers and the nature of reality. In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!

The Golden Ratio is a captivating journey through art and architecture, botany and biology, physics and mathematics. It tells the human story of numerous phi-fixated individuals, including the followers of Pythagoras who believed that this proportion revealed the hand of God; astronomer Johannes Kepler, who saw phi as the greatest treasure of geometry; such Renaissance thinkers as mathematician Leonardo Fibonacci of Pisa; and such masters of the modern world as Goethe, Cezanne, Bartok, and physicist Roger Penrose. Wherever his quest for the meaning of phi takes him, Mario Livio reveals the world as a place where order, beauty, and eternal mystery will always coexist.
Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.