Practical MLOps: Operationalizing Machine Learning Models

· "O'Reilly Media, Inc."
电子书
460
符合条件

关于此电子书

Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.

Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.

You'll discover how to:

  • Apply DevOps best practices to machine learning
  • Build production machine learning systems and maintain them
  • Monitor, instrument, load-test, and operationalize machine learning systems
  • Choose the correct MLOps tools for a given machine learning task
  • Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware

作者简介

Noah Gift is the founder of Pragmatic A.I. Labs. He lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, the Graduate Data Science program at UC Berkeley, the UC Davis Graduate School of Management MSBA program, UNC Charlotte Data Science Initiative, and University of Tennessee (as part of the Tennessee Digital Jobs Factory). He teaches and designs graduate machine learning, MLOps, AI, and data science courses, and consulting on machine learning and cloud architecture for students and faculty. As a former CTO, individual contributor, and consultant he has over 20 years' experience shipping revenue-generating products in many industries including film, games, and SaaS.

Alfredo Deza is a passionate software engineer, speaker, author, and former Olympic athlete with almost two decades of DevOps and software engineering experience. He currently teaches Machine Learning Engineering and gives worldwide lectures about software development, personal development, and professional sports. Alfredo has written several books about DevOps and Python, and continues to share his knowledge about resilient infrastructure, testing, and robust development practices in courses, books, and presentations.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。