Regularised Integrals, Sums and Traces: An Analytic Point of View

· American Mathematical Soc.
E-book
190
Páginas

Sobre este e-book

``Regularization techniques'' is the common name for a variety of methods used to make sense of divergent series, divergent integrals, or traces of linear operators in infinite-dimensional spaces. Such methods are often indispensable in problems of number theory, geometry, quantum field theory, and other areas of mathematics and theoretical physics. However arbitrary and noncanonical they might seem at first glance, regularized sums, integrals, and traces often contain canonical concepts, and the main purpose of this book is to illustrate and explain this. This book provides a unified and self-contained mathematical treatment of various regularization techniques. The author shows how to derive regularized sums, integrals, and traces from certain canonical building blocks of the original divergent object. In the process of putting together these ``building blocks'', one encounters many problems and ambiguities caused by various so-called anomalies, which are investigated and explained in detail. Nevertheless, it turns out that the corresponding canonical sums, integrals, sums, and traces are well behaved, thus making the regularization procedure possible and manageable. This new unified outlook on regularization techniques in various fields of mathematics and in quantum field theory can serve as an introduction for anyone from a beginning mathematician interested in the subject to an experienced physicist who wants to gain a unified outlook on techniques he/she uses on a daily basis.

Sobre o autor

Sylvie Paycha, Universität Potsdam, Potsdam, Germany and Université Blaise Pascal, Aubière, Cedex, France

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.