The Feynman Lectures on Physics: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat, Volume 1

Sold by Basic Books
16
Free sample

"The whole thing was basically an experiment," Richard Feynman said late in his career, looking back on the origins of his lectures. The experiment turned out to be hugely successful, spawning publications that have remained definitive and introductory to physics for decades. Ranging from the basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight.
Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.
Read more
Collapse

About the author

The late Richard P. Feynman was Richard Chace Tolman Professor of Theoretical Physics at the California Institute of Technology. He was awarded the 1965 Nobel Prize for his work on the development of quantum field theory. He was also one of the most famous and beloved figures of the twentieth century, both in physics and in the public arena.
Read more
Collapse
4.8
16 total
Loading...

Additional Information

Publisher
Basic Books
Read more
Collapse
Published on
Sep 29, 2015
Read more
Collapse
Pages
1200
Read more
Collapse
ISBN
9780465040858
Read more
Collapse
Features
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Mechanics / General
Science / Mechanics / Thermodynamics
Science / Physics / Atomic & Molecular
Science / Physics / General
Science / Radiation
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Modern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics.
This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter:
- A large variety of theoretical approaches used in describing various media
- Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.)
- A description of the applications used in different branches of physics and many other fields of natural sciences
- Describes the whole complexity of electrodynamics in matter including material at different levels.
- Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field.
- The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level
- All examples and problems are described in detail in the text to help the reader learn how to solve problems
- Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.
This book discusses the interaction of light with atoms, concentrating on the semiclassical descriptions of the processes. It begins by discussing the classical theory of electromagnetic radiation and its interaction with a classical charged dipole oscillator. Then, in a pivotal chapter, the interaction with a free charge is described (the Compton effect); it is shown that, in order to give agreement with observation, certain quantum rules must be introduced. The book then proceeds to discuss the interaction from this point of view-light always being described classically, atoms described quantum-mechanically, with quantum rules for the interaction. Subsequent chapters deal with stimulated emission and absorption, spontaneous emission and decay, the general problem of light stimulating and being scattered from the two-state atom, the photoelectric effect, and photoelectric counting statistics. Finally the author gives a personal view on the nature of light and his own way of looking at certain paradoxes. The writing of this book was originally conceived as a collaboration between the present author and a colleague of former years, Alan V. Durrant. Indeed, some preliminary exchange of ideas took place in the mid-1970s. But the problems of joint-authorship from antipodean positions proved too difficult and the project was abandoned. I would like to record my indebted ness to him for the stimulation of this early association. I also acknowledge the encouragement of my colleagues at the Univer sity of Otago. Special reference must be made to D. M.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.