Numerical Solution of the Dispersion Relations for a Hot Magnetoplasma with Collisions

· Air Force Cambridge Research Laboratories, Air Force Systems Command, United States Air Force
Ebook
31
Pages

About this ebook

Detailed numerical studies have been made on the dispersion relations for electromagnetic waves propagating in partially ionized gases immersed in a dc magnetic field. Accurate values of the attenuation constant and phase shift are needed in the design of radio communications systems where waves must propagate through an ionized gas (such as in reentry communications systems), in the design of radar jamming devices used during missile reentry, and in the analytical study of ionospheric propagation phenomena. The numerical solution of the dispersion relations enable the effects of collisionless wave damping, velocity-dependent electron-neutral collisions, and Coulomb encounters to be studied. The attenuation and phase shift of waves propagating through a plasma are dependent upon the signal frequency, plasma temperature, plasma density, degree of ionization, and cross sections for electron scattering. Graphs are presented which enable attenuation constants and phase shifts to be readily evaluated for a very wide range of possible plasma conditions. (Author).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.