Data Preprocessing in Data Mining

Intelligent Systems Reference Library

Free sample

Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.

This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Read more
Loading...

Additional Information

Publisher
Springer
Read more
Published on
Aug 30, 2014
Read more
Pages
320
Read more
ISBN
9783319102474
Read more
Language
English
Read more
Genres
Computers / Computer Graphics
Computers / Databases / Data Mining
Computers / Intelligence (AI) & Semantics
Computers / Optical Data Processing
Technology & Engineering / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Fuzzy Sets and Their Extensions: Representation, Aggregation and Models Intelligent Systems from Decision Making to Data Mining, Web Intelligence and Computer Vision Fuzzy sets are now more than 40 years old, and have come of age. However, the development of fuzzy set theory at the theoretical level, and its successful appli- tions to science and technology have often run in isolation. Only a little part of the theoretical apparatus was effectively used in past applications. The most prominent ones, namely fuzzy rule-based modeling and control engineering, were directly - spired from a seminal paper by Lot? Zadeh in 1973, suggesting how to use expert knowledge for synthetizing control laws, and from the ?rst experiments published by Abe Mamdani. Later in the eighties, when spectacular applications were bl- soming in Japan, fuzzy rule-based systems were systematized and simpli?ed by Michio Sugeno and colleagues, and became a basic approach to non-linear system modeling and control, soon hybridized with neural networks in the nineties. Thus fuzzy systems signi?cantly contributed to the raise of computational intelligence, and a lot of learning techniques for the construction of (supposedly interpretable) fuzzy models from data were developed under the ?ag of soft computing. Even if this area was quite successful, it is patent that the role, in the success of fuzzy logic, of new fuzzy set-related concepts developed quite at the same time in themathematicalnicheofthefuzzyset communitywaslimited.
Foreword by Steven Pinker

Blending the informed analysis of The Signal and the Noise with the instructive iconoclasm of Think Like a Freak, a fascinating, illuminating, and witty look at what the vast amounts of information now instantly available to us reveals about ourselves and our world—provided we ask the right questions.

By the end of an average day in the early twenty-first century, human beings searching the internet will amass eight trillion gigabytes of data. This staggering amount of information—unprecedented in history—can tell us a great deal about who we are—the fears, desires, and behaviors that drive us, and the conscious and unconscious decisions we make. From the profound to the mundane, we can gain astonishing knowledge about the human psyche that less than twenty years ago, seemed unfathomable.

Everybody Lies offers fascinating, surprising, and sometimes laugh-out-loud insights into everything from economics to ethics to sports to race to sex, gender and more, all drawn from the world of big data. What percentage of white voters didn’t vote for Barack Obama because he’s black? Does where you go to school effect how successful you are in life? Do parents secretly favor boy children over girls? Do violent films affect the crime rate? Can you beat the stock market? How regularly do we lie about our sex lives and who’s more self-conscious about sex, men or women?

Investigating these questions and a host of others, Seth Stephens-Davidowitz offers revelations that can help us understand ourselves and our lives better. Drawing on studies and experiments on how we really live and think, he demonstrates in fascinating and often funny ways the extent to which all the world is indeed a lab. With conclusions ranging from strange-but-true to thought-provoking to disturbing, he explores the power of this digital truth serum and its deeper potential—revealing biases deeply embedded within us, information we can use to change our culture, and the questions we’re afraid to ask that might be essential to our health—both emotional and physical. All of us are touched by big data everyday, and its influence is multiplying. Everybody Lies challenges us to think differently about how we see it and the world.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.