Semirings and their Applications

· Springer Science & Business Media
eBook
382
Pages

About this eBook

There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world. - Nikolai Ivanovich Lobatchevsky This book is an extensively-revised and expanded version of "The Theory of Semirings, with Applicationsin Mathematics and Theoretical Computer Science" [Golan, 1992], first published by Longman. When that book went out of print, it became clear - in light of the significant advances in semiring theory over the past years and its new important applications in such areas as idempotent analysis and the theory of discrete-event dynamical systems - that a second edition incorporating minor changes would not be sufficient and that a major revision of the book was in order. Therefore, though the structure of the first «dition was preserved, the text was extensively rewritten and substantially expanded. In particular, references to many interesting and applications of semiring theory, developed in the past few years, had to be added. Unfortunately, I find that it is best not to go into these applications in detail, for that would entail long digressions into various domains of pure and applied mathematics which would only detract from the unity of the volume and increase its length considerably. However, I have tried to provide an extensive collection of examples to arouse the reader's interest in applications, as well as sufficient citations to allow the interested reader to locate them. For the reader's convenience, an index to these citations is given at the end of the book .

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.