Sample Size Calculations in Clinical Research

Free sample

Sample size calculation plays an important role in clinical research. It is not uncommon, however, to observe discrepancies among study objectives (or hypotheses), study design, statistical analysis (or test statistic), and sample size calculation. Focusing on sample size calculation for studies conducted during the various phases of clinical research and development, Sample Size Calculation in Clinical Research explores the causes of discrepancies and how to avoid them.

This volume provides formulas and procedures for determination of sample size required not only for testing equality, but also for testing non-inferiority/superiority, and equivalence (similarity) based on both untransformed (raw) data and log-transformed data under a parallel-group design or a crossover design with equal or unequal ratio of treatment allocations. It contains a comprehensive and unified presentation of statistical procedures for sample size calculation that are commonly employed at various phases of clinical development. Each chapter includes, whenever possible, real examples of clinical studies from therapeutic areas such as cardiovascular, central nervous system, anti-infective, oncology, and women's health to demonstrate the clinical and statistical concepts, interpretations, and their relationships and interactions.

The book highlights statistical procedures for sample size calculation and justification that are commonly employed in clinical research and development. It provides clear, illustrated explanations of how the derived formulas and/or statistical procedures can be used.
Read more

About the author

SHEIN-CHUNG CHOW, PhD, is currently Vice President of Biostatistics and Clinical Data Management for Millennium Pharmaceuticals, Inc., in Cambridge, Massachusetts.

JEN-PEI LIU, PhD, is currently Professor of Statistics for the National Cheng kung University in Tainan, Taiwan, and an investigator for the National Health Research Institutes in Taipei, Taiwan. Both authors have extensive background experience in industry and academia, and, collectively, have published well over a dozen books in their respective fields of study.

Read more
5.0
1 total
Loading...

Additional Information

Publisher
CRC Press
Read more
Published on
Mar 4, 2003
Read more
Pages
358
Read more
ISBN
9780203911341
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Probability & Statistics / General
Medical / Biostatistics
Medical / Epidemiology
Medical / Pharmacology
Medical / Research
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The US Food and Drug Administration's Report to the Nation in 2004 and 2005 indicated that one of the top reasons for drug recall was that stability data did not support existing expiration dates. Pharmaceutical companies conduct stability studies to characterize the degradation of drug products and to estimate drug shelf life. Illustrating how stability studies play an important role in drug safety and quality assurance, Statistical Design and Analysis of Stability Studies presents the principles and methodologies in the design and analysis of stability studies.

After introducing the basic concepts of stability testing, the book focuses on short-term stability studies and reviews several methods for estimating drug expiration dating periods. It then compares some commonly employed study designs and discusses both fixed and random batch statistical analyses. Following a chapter on the statistical methods for stability analysis under a linear mixed effects model, the book examines stability analyses with discrete responses, multiple components, and frozen drug products. In addition, the author provides statistical methods for dissolution testing and explores current issues and recent developments in stability studies.

To ensure the safety of consumers, professionals in the field must carry out stability studies to determine the reliability of drug products during their expiration period. This book provides the material necessary for you to perform stability designs and analyses in pharmaceutical research and development.
In response to the US FDA’s Critical Path Initiative, innovative adaptive designs are being used more and more in clinical trials due to their flexibility and efficiency, especially during early phase development. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development provides a comprehensive and unified presentation of the principles and latest statistical methodologies used when modifying trial procedures based on accrued data of ongoing clinical trials. The book also gives a well-balanced summary of current regulatory perspectives.

The first several chapters focus on the fundamental theory behind adaptive trial design, the application of the Bayesian approach to adaptive designs, and the impact of potential population shift due to protocol amendments. The book then presents a variety of statistical methods for group sequential design, classical design, dose-finding trials, Phase I/II and Phase II/III seamless adaptive designs, multiple stage seamless adaptive trial design, adaptive randomization trials, hypotheses-adaptive design, and treatment-adaptive design. It also covers predictive biomarker diagnostics for new drug development, clinical strategies for endpoint selection in translational research, the role of independent data monitoring committees in adaptive clinical trials, the enrichment process in targeted clinical trials for personalized medicine, applications of adaptive designs that use genomic or genetic information, adaptive trial simulation, and the efficiency of adaptive design. The final chapters discuss case studies as well as standard operating procedures for good adaptive practices.

With contributions from leading clinical researchers in the pharmaceutical industry, academia, and regulatory agencies, this handbook offers an up-to-date, complete treatment of the principles and methods of adaptive design and analysis. Along with reviewing recent developments, it examines issues commonly encountered when applying adaptive design methods in clinical trials.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.