Singular Nonlinear Partial Differential Equations

·
· Aspects of Mathematics Βιβλίο 28 · Springer Science & Business Media
ebook
272
Σελίδες

Σχετικά με το ebook

The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. We study the existence of formal power series solutions, holomorphic solutions, and singular solutions of singular non linear partial differential equations. In the first chapter, we introduce operators with regular singularities in the one variable case and we give a new simple proof of the classical Maillet's theorem for algebraic differential equations. In chapter 2, we extend this theory to operators in several variables. The chapter 3 is devoted to the study of formal and convergent power series solutions of a class of singular partial differential equations having a linear part, using the method of iteration and also Newton's method. As an appli cation of the former results, we look in chapter 4 at the local theory of differential equations of the form xy' = 1(x,y) and, in particular, we show how easy it is to find the classical results on such an equation when 1(0,0) = 0 and give also the study of such an equation when 1(0,0) #- 0 which was never given before and can be extended to equations of the form Ty = F(x, y) where T is an arbitrary vector field.

Σχετικά με τον συγγραφέα

Prof. Raymond Gerard ist am Institut de Recherche Mathématique Alsacien an der Université Louis Pasteur in Strasbourg beschäftigt. Prof. Hidetoshi Tahara lehrt an der Sophia Universität in Tokyo.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.