Space Groups and Their Representations

· Elsevier
Электрондук китеп
88
Барактар
Кошсо болот

Учкай маалымат

Space Groups and Their Representations focuses on the discussions on space groups and their corresponding numerical and analytical representations. Divided into six chapters, the book starts with the presentation of the nature and properties of space groups. This topic includes orthogonal transformations and Bravais lattices, such as cubic system, triclinic system, trigonal and hexagonal systems, monoclinic systems, and tetragonal systems. The book then proceeds with the discussion on the irreducible representations of space groups, and then covers the general theory, simplification, and introduction. Discussions on various examples of space groups are given in the third chapter. Numerical representations are provided to support the validity of the different space groups, including discussions on double groups. The book also points out that the irreducible representation of space groups and the application of representation theory to them manifest the latest developments on geometrical crystallography. The text is a vital source of data for scholars and readers who are interested to study space groups and crystallography.

Автор жөнүндө

Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metal–insulator transitions, and in situ spectroscopic characterization.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.