Space Groups and Their Representations

· Elsevier
E-book
88
Pages
Éligible

À propos de cet e-book

Space Groups and Their Representations focuses on the discussions on space groups and their corresponding numerical and analytical representations. Divided into six chapters, the book starts with the presentation of the nature and properties of space groups. This topic includes orthogonal transformations and Bravais lattices, such as cubic system, triclinic system, trigonal and hexagonal systems, monoclinic systems, and tetragonal systems. The book then proceeds with the discussion on the irreducible representations of space groups, and then covers the general theory, simplification, and introduction. Discussions on various examples of space groups are given in the third chapter. Numerical representations are provided to support the validity of the different space groups, including discussions on double groups. The book also points out that the irreducible representation of space groups and the application of representation theory to them manifest the latest developments on geometrical crystallography. The text is a vital source of data for scholars and readers who are interested to study space groups and crystallography.

À propos de l'auteur

Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metal–insulator transitions, and in situ spectroscopic characterization.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.