Space Groups and Their Representations

· Elsevier
E-boek
88
Pagina's
Geschikt

Over dit e-boek

Space Groups and Their Representations focuses on the discussions on space groups and their corresponding numerical and analytical representations. Divided into six chapters, the book starts with the presentation of the nature and properties of space groups. This topic includes orthogonal transformations and Bravais lattices, such as cubic system, triclinic system, trigonal and hexagonal systems, monoclinic systems, and tetragonal systems. The book then proceeds with the discussion on the irreducible representations of space groups, and then covers the general theory, simplification, and introduction. Discussions on various examples of space groups are given in the third chapter. Numerical representations are provided to support the validity of the different space groups, including discussions on double groups. The book also points out that the irreducible representation of space groups and the application of representation theory to them manifest the latest developments on geometrical crystallography. The text is a vital source of data for scholars and readers who are interested to study space groups and crystallography.

Over de auteur

Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metal–insulator transitions, and in situ spectroscopic characterization.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.