Space Groups and Their Representations

· Elsevier
Электронная книга
88
Количество страниц
Можно добавить

Об электронной книге

Space Groups and Their Representations focuses on the discussions on space groups and their corresponding numerical and analytical representations. Divided into six chapters, the book starts with the presentation of the nature and properties of space groups. This topic includes orthogonal transformations and Bravais lattices, such as cubic system, triclinic system, trigonal and hexagonal systems, monoclinic systems, and tetragonal systems. The book then proceeds with the discussion on the irreducible representations of space groups, and then covers the general theory, simplification, and introduction. Discussions on various examples of space groups are given in the third chapter. Numerical representations are provided to support the validity of the different space groups, including discussions on double groups. The book also points out that the irreducible representation of space groups and the application of representation theory to them manifest the latest developments on geometrical crystallography. The text is a vital source of data for scholars and readers who are interested to study space groups and crystallography.

Об авторе

Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metal–insulator transitions, and in situ spectroscopic characterization.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.