Stochastic Flows in the Brownian Web and Net

· ·
· American Mathematical Soc.
كتاب إلكتروني
160
صفحة

معلومات عن هذا الكتاب الإلكتروني

It is known that certain one-dimensional
nearest-neighbor random walks in i.i.d. random space-time environments
have diffusive scaling limits. Here, in the continuum limit, the random
environment is represented by a `stochastic flow of kernels', which is
a collection of random kernels that can be loosely interpreted as the
transition probabilities of a Markov process in a random environment.
The theory of stochastic flows of kernels was first developed by Le
Jan and Raimond, who showed that each such flow is characterized by its
 -point motions. The authors' work focuses on a class of stochastic flows of kernels with Brownian  -point motions which, after their inventors, will be called Howitt-Warren flows.

The
authors' main result gives a graphical construction of general
Howitt-Warren flows, where the underlying random environment takes on
the form of a suitably marked Brownian web. This extends earlier work
of Howitt and Warren who showed that a special case, the so-called
"erosion flow", can be constructed from two coupled "sticky Brownian
webs". The authors' construction for general Howitt-Warren flows is
based on a Poisson marking procedure developed by Newman, Ravishankar
and Schertzer for the Brownian web. Alternatively, the authors show
that a special subclass of the Howitt-Warren flows can be constructed
as random flows of mass in a Brownian net, introduced by Sun and Swart.

Using these constructions, the authors prove some new results for the Howitt-Warren flows.

 

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.