String-Math 2014

¡ ¡ ¡
¡ Proceedings of Symposia in Pure Mathematics āļ´āˇœāļ­ 93 ¡ American Mathematical Soc.
āļ‰-āļ´āˇœāļ­
396
āļ´āˇ’āļ§āˇ”

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļœāˇāļą

The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops.

For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.

āļšāļģ⎊āļ­āˇ˜ āļ´āˇ’⎅⎒āļļāļŗ

 Edited by Vincent Bouchard: University of Alberta, Edmonton, Alberta, Canada,
Charles Doran: University of Alberta, Edmonton, Alberta, Canada,
Stefan MÊndez-Diez: Utah State University, Logan, UT,
Callum Quigley: University of Toronto, Toronto, Ontario, Canada

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļ…āļœāļēāļąāˇŠāļą

āļ”āļļ āˇƒāˇ’āļ­āļą āļ¯āˇ™āļē āļ…āļ´āļ§ āļšāˇ’āļēāļąāˇŠāļą.

āļšāˇ’āļē⎀⎓āļ¸āˇš āļ­āˇœāļģāļ­āˇ”āļģ⎔

⎃⎊āļ¸āˇāļģ⎊āļ§āˇŠ āļ¯āˇ”āļģāļšāļŽāļą āˇƒāˇ„ āļ§āˇāļļ⎊āļŊāļ§āˇŠ
Android āˇƒāˇ„ iPad/iPhone ⎃āļŗāˇ„āˇ Google Play āļ´āˇœāļ­āˇŠ āļē⎙āļ¯āˇ”āļ¸ āˇƒāˇŠāļŽāˇāļ´āļąāļē āļšāļģāļąāˇŠāļą. āļ‘āļē āļ”āļļ⎚ āļœāˇ’āļĢ⎔āļ¸ āˇƒāļ¸āļŸ āˇƒāˇŠāˇ€āļēāļ‚āļšāˇŠâ€āļģ⎓āļē⎀ ⎃āļ¸āļ¸āˇ”⎄⎔āļģ⎊āļ­ āļšāļģāļą āļ…āļ­āļģ āļ”āļļāļ§ āļ•āļąāˇ‘āļ¸ āļ­āˇāļąāļš āˇƒāˇ’āļ§ āˇƒāļļ⎐āļŗāˇ’⎀ āˇ„āˇ āļąāˇœāļļ⎐āļŗāˇ’⎀ āļšāˇ’āļē⎀⎓āļ¸āļ§ āļ‰āļŠ āˇƒāļŊ⎃āļē⎒.
āļŊ⎐āļ´āˇŠāļ§āˇœāļ´āˇŠ āˇƒāˇ„ āļ´āļģ⎒āļœāļĢāļš
āļ”āļļāļ§ āļ”āļļ⎚ āļ´āļģ⎒āļœāļĢāļšāļē⎚ ⎀⎙āļļ⎊ āļļāˇŠâ€āļģāˇ€āˇŠāˇƒāļģāļē āļˇāˇāˇ€āˇ’āļ­āļē⎙āļąāˇŠ Google Play āļ¸āļ­ āļ¸āˇ’āļŊāļ¯āˇ“ āļœāļ­āˇŠ āˇāˇŠâ€āļģāˇ€āˇŠâ€āļēāļ´āˇœāļ­āˇŠāˇ€āļŊāļ§ āˇƒāˇ€āļąāˇŠ āļ¯āˇ’āļē ⎄⎐āļš.
eReaders āˇƒāˇ„ ⎀⎙āļąāļ­āˇŠ āļ‹āļ´āˇāļ‚āļœ
Kobo eReaders ⎀⎐āļąāˇ’ e-ink āļ‹āļ´āˇāļ‚āļœ āļ´āˇ’⎅⎒āļļāļŗ āļšāˇ’āļē⎀⎓āļ¸āļ§, āļ”āļļ āˇ€āˇ’āˇƒāˇ’āļąāˇŠ āļœāˇœāļąāˇ”⎀āļšāˇŠ āļļāˇāļœāˇ™āļą āļ”āļļ⎚ āļ‹āļ´āˇāļ‚āļœāļēāļ§ āļ‘āļē āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸ āˇƒāˇ’āļ¯āˇ” āļšāˇ… āļē⎔āļ­āˇ” āˇ€āˇš. āļ†āļ°āˇāļģāļšāļģ⎔ āļ‰-āļšāˇ’āļē⎀āļąāļēāļ§ āļœāˇœāļąāˇ” āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸āļ§ āˇ€āˇ’āˇƒāˇŠāļ­āļģāˇāļ­āˇŠāļ¸āļš āļ‹āļ¯āˇ€āˇ” āļ¸āļ°āˇŠâ€āļē⎃⎊āļŽāˇāļą āļ‹āļ´āļ¯āˇ™āˇƒāˇŠ āļ…āļąāˇ”āļœāļ¸āļąāļē āļšāļģāļąāˇŠāļą.