Survival Analysis with Python

· CRC Press
電子書
94
頁數
符合資格

關於這本電子書

Survival analysis uses statistics to calculate time to failure. Survival Analysis with Python takes a fresh look at this complex subject by explaining how to use the Python programming language to perform this type of analysis. As the subject itself is very mathematical and full of expressions and formulations, the book provides detailed explanations and examines practical implications. The book begins with an overview of the concepts underpinning statistical survival analysis. It then delves into

  • Parametric models with coverage of
    • Concept of maximum likelihood estimate (MLE) of a probability distribution parameter
    • MLE of the survival function
    • Common probability distributions and their analysis
    • Analysis of exponential distribution as a survival function
    • Analysis of Weibull distribution as a survival function
    • Derivation of Gumbel distribution as a survival function from Weibull

  • Non-parametric models including
    • Kaplan–Meier (KM) estimator, a derivation of expression using MLE
    • Fitting KM estimator with an example dataset, Python code and plotting curves
    • Greenwood’s formula and its derivation

  • Models with covariates explaining
    • The concept of time shift and the accelerated failure time (AFT) model
    • Weibull-AFT model and derivation of parameters by MLE
    • Proportional Hazard (PH) model
    • Cox-PH model and Breslow’s method
    • Significance of covariates
    • Selection of covariates

The Python lifelines library is used for coding examples. By mapping theory to practical examples featuring datasets, this book is a hands-on tutorial as well as a handy reference.

關於作者

Avishek Nag has a Masters of Technology Degree in data analytics and machine learning from Birla Institute of Technology and Science, Pilani, India. He has more than 15 years of experience in Software Development and Architecting Systems. He also has professional experience in data science and machine learning, Java, Python, Big Data, including Spark and MongoDB. He has worked at VMWare, Cisco, Mobile Iron, and Computer Science Corporation (now called DXC). He is also the author of the book Pragmatic Machine Learning with Python, which is recommended in the ACM Education Digital Library.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。