L2 Approaches in Several Complex Variables: Development of Oka–Cartan Theory by L2 Estimates for the d-bar Operator

· Springer
4.0
2 reviews
Ebook
196
Pages

About this ebook

The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L2 extension of holomorphic functions.

In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L2 method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka–Cartan theory is given by this method. The L2 extension theorem with an optimal constant is included, obtained recently by Z. Błocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani–Yamaguchi, Berndtsson, and Guan–Zhou. Most of these results are obtained by the L2 method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L2 method obtained during these 15 years.

Ratings and reviews

4.0
2 reviews

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.