The Boy Who Played with Fusion: Extreme Science, Extreme Parenting, and How to Make a Star

Free sample

This story of a child prodigy and his unique upbringing is “an engrossing journey to the outer realms of science and parenting” (Paul Greenberg, author of Four Fish).
 
A PEN/E. O. Wilson Literary Science Writing Award Finalist
 
Like many young children, Taylor Wilson dreamed of becoming an astronaut. Only Wilson mastered the science of rocket propulsion by the age of nine. When he was eleven, he tried to cure his grandmother’s cancer—and discovered new ways to produce medical isotopes. Then, at fourteen, Wilson became the youngest person in history to achieve nuclear fusion, building a 500-million-degree reactor—in his parents’ garage.
 
In The Boy Who Played with Fusion, science journalist Tom Clynes narrates Wilson’s extraordinary story. Born in Texarkana, Arkansas, Wilson quickly displayed an advanced intellect. Recognizing their son’s abilities and the limitations of their local schools, his parents took a bold leap and moved the family to Reno, Nevada. There, Wilson could attend a unique public high school created specifically for academic superstars. Wilson is now designing devices to prevent terrorists from shipping radioactive material and inspiring a new generation to take on the challenges of science.
 
If you’re wondering how someone so young can achieve so much, The Boy Who Played with Fusion has the answer. Along the way, Clynes’ narrative teaches parents, teachers, and society how and why we urgently need to support high-achieving kids.
 
“An essential contribution to our understanding of the most important underlying questions about the development of giftedness, talent, creativity, and intelligence.” —Psychology Today
 
“A compelling study of the thrills—and burdens—of being born with an alpha intellect.” —Financial Times
 
Read more

About the author

Tom Clynes writes regularly for National Geographic and Popular Science, where he is a contributing editor. His work has also appeared in Men's Journal,Nature, New York, the Sunday Times Magazine (London), the Washington Post, and many other publications. He is also the author of the book Wild Planet!
Read more
4.8
4 total
Loading...

Additional Information

Publisher
HMH
Read more
Published on
Jun 9, 2015
Read more
Pages
272
Read more
ISBN
9780544084742
Read more
Language
English
Read more
Genres
Education / Special Education / Gifted
Family & Relationships / Education
Science / Physics / Nuclear
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Growing up in suburban Detroit, David Hahn was fascinated by science, and his basement experiments—building homemade fireworks, brewing moonshine, and concocting his own self-tanning lotion—were more ambitious than those of other boys. While working on his Atomic Energy badge for the Boy Scouts, David’s obsessive attention turned to nuclear energy. Throwing caution to the wind, he plunged into a new project: building a nuclear breeder reactor in his backyard garden shed.

In The Radioactive Boy Scout, veteran journalist Ken Silverstein recreates in brilliant detail the months of David’s improbable nuclear quest. Posing as a physics professor, David solicited information on reactor design from the U.S. government and from industry experts. (Ironically, the Nuclear Regulatory Commission was his number one source of information.) Scavenging antiques stores and junkyards for old-fashioned smoke detectors and gas lanterns—both of which contain small amounts of radioactive material—and following blueprints he found in an outdated physics textbook, David cobbled together a crude device that threw off toxic levels of radiation. His unsanctioned and wholly unsupervised project finally sparked an environmental catastrophe that put his town’s forty thousand residents at risk and caused the EPA to shut down his lab and bury it at a radioactive dumpsite in Utah.

An outrageous account of ambition and, ultimately, hubris that sits comfortably on the shelf next to such offbeat science books as Driving Mr. Albert and stories of grand capers like Catch Me If You Can, The Radioactive Boy Scout is a real-life adventure with the narrative energy of a first-rate thriller.


From the Hardcover edition.
This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation.

This book also:

Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power

Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text

Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device

Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.