Big Data Analytics with R and Hadoop

Packt Publishing Ltd
36
Free sample

Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.
Read more
Collapse

About the author

Vignesh Prajapati, from India, is a Big Data enthusiast, a Pingax (www.pingax. com) consultant and a software professional at Enjay. He is an experienced ML Data engineer. He is experienced with Machine learning and Big Data technologies such as R, Hadoop, Mahout, Pig, Hive, and related Hadoop components to analyze datasets to achieve informative insights by data analytics cycles. He pursued B.E from Gujarat Technological University in 2012 and started his career as Data Engineer at Tatvic. His professional experience includes working on the development of various Data analytics algorithms for Google Analytics data source, for providing economic value to the products. To get the ML in action, he implemented several analytical apps in collaboration with Google Analytics and Google Prediction API services. He also contributes to the R community by developing the RGoogleAnalytics' R library as an open source code Google project and writes articles on Data-driven technologies. Vignesh is not limited to a single domain; he has also worked for developing various interactive apps via various Google APIs, such as Google Analytics API, Realtime API, Google Prediction API, Google Chart API, and Translate API with the Java and PHP platforms. He is highly interested in the development of open source technologies. Vignesh has also reviewed the Apache Mahout Cookbook for Packt Publishing. This book provides a fresh, scope-oriented approach to the Mahout world for beginners as well as advanced users. Mahout Cookbook is specially designed to make users aware of the different possible machine learning applications, strategies, and algorithms to produce an intelligent as well as Big Data application.
Read more
Collapse
4.9
36 total
Loading...

Additional Information

Publisher
Packt Publishing Ltd
Read more
Collapse
Published on
Nov 25, 2013
Read more
Collapse
Pages
238
Read more
Collapse
ISBN
9781782163299
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Computers / Data Processing
Computers / Databases / Data Mining
Computers / Databases / Data Warehousing
Computers / Enterprise Applications / Business Intelligence Tools
Read more
Collapse
Content Protection
This content is DRM free.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The Complete Guide to Data Science with Hadoop—For Technical Professionals, Businesspeople, and Students

Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials.

The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization.

Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP).

This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives.

Learn

What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language
Perform forensic investigations on Hadoop clusters with cutting-edge tools and techniquesAbout This BookIdentify, collect, and analyze Hadoop evidence forensicallyLearn about Hadoop's internals and Big Data file storage conceptsA step-by-step guide to help you perform forensic analysis using freely available toolsWho This Book Is For

This book is meant for statisticians and forensic analysts with basic knowledge of digital forensics. They do not need to know Big Data Forensics. If you are an IT professional, law enforcement professional, legal professional, or a student interested in Big Data and forensics, this book is the perfect hands-on guide for learning how to conduct Hadoop forensic investigations. Each topic and step in the forensic process is described in accessible language.

What You Will LearnUnderstand Hadoop internals and file storageCollect and analyze Hadoop forensic evidencePerform complex forensic analysis for fraud and other investigationsUse state-of-the-art forensic toolsConduct interviews to identify Hadoop evidenceCreate compelling presentations of your forensic findingsUnderstand how Big Data clusters operateApply advanced forensic techniques in an investigation, including file carving, statistical analysis, and moreIn Detail

Big Data forensics is an important type of digital investigation that involves the identification, collection, and analysis of large-scale Big Data systems. Hadoop is one of the most popular Big Data solutions, and forensically investigating a Hadoop cluster requires specialized tools and techniques. With the explosion of Big Data, forensic investigators need to be prepared to analyze the petabytes of data stored in Hadoop clusters. Understanding Hadoop's operational structure and performing forensic analysis with court-accepted tools and best practices will help you conduct a successful investigation.

Discover how to perform a complete forensic investigation of large-scale Hadoop clusters using the same tools and techniques employed by forensic experts. This book begins by taking you through the process of forensic investigation and the pitfalls to avoid. It will walk you through Hadoop's internals and architecture, and you will discover what types of information Hadoop stores and how to access that data. You will learn to identify Big Data evidence using techniques to survey a live system and interview witnesses. After setting up your own Hadoop system, you will collect evidence using techniques such as forensic imaging and application-based extractions. You will analyze Hadoop evidence using advanced tools and techniques to uncover events and statistical information. Finally, data visualization and evidence presentation techniques are covered to help you properly communicate your findings to any audience.

Style and approach

This book is a complete guide that follows every step of the forensic analysis process in detail. You will be guided through each key topic and step necessary to perform an investigation. Hands-on exercises are presented throughout the book, and technical reference guides and sample documents are included for real-world use.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.