Markov Models for Pattern Recognition: From Theory to Applications, Edition 2

· Springer Science & Business Media
Ebook
276
Pages

About this ebook

Markov models are extremely useful as a general, widely applicable tool for many areas in statistical pattern recognition.

This unique text/reference places the formalism of Markov chain and hidden Markov models at the very center of its examination of current pattern recognition systems, demonstrating how the models can be used in a range of different applications. Thoroughly revised and expanded, this new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure, and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions.

Topics and features: introduces the formal framework for Markov models, describing hidden Markov models and Markov chain models, also known as n-gram models; covers the robust handling of probability quantities, which are omnipresent when dealing with these statistical methods; presents methods for the configuration of hidden Markov models for specific application areas, explaining the estimation of the model parameters; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models in automatic speech recognition, character and handwriting recognition, and the analysis of biological sequences.

Researchers, practitioners, and graduate students of pattern recognition will all find this book to be invaluable in aiding their understanding of the application of statistical methods in this area.

About the author

Prof. Dr.-Ing. Gernot A. Fink is Head of the Pattern Recognition Research Group at TU Dortmund University, Dortmund, Germany. His other publications include the Springer title Markov Models for Handwriting Recognition.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.